CS 453/698 Assignment 4: Authentication and
Hashing

TA: Cong Ma <cong.maGuwaterloo.ca>
Office Hours: See Piazza announcement

Release Date: July 15, 2025
Due Date: July 25, 2025

Overview

In this assignment, you will explore how hash functions are used in authentica-
tion systems through hands-on attacks. Each of the 4 problems provides you
with the source code of a login program that uses a specific hashing scheme;
each problem also contains a password.txt file that stores a single password
hash.

Your goal is to implement an inverse program that recovers a password
from a hash. While the assignment itself is implemented in Python, you may
write your solution in any language of your choice.

You might want to review the slide: https://watssec.github.io/cs453-s25/
assets/modules/user-sec/auth/slides.pdf

Starting Code

The starting code is hosted on CS 453/CS 698 LEARN — Content — A4 Files

Commands

e ./login PASSWORD
It reads the hash from password.txt, and reads a password from the
command line. It uses a specific hash function to hash the given password
and compare with the one on file. It will print either Login successful!
or Login failed!.

e ./invert HASH
Your solution goes in here. The program reads a hash from the com-
mand line and prints a password that can be used in ./login; it effectively
inverse the hash function used in ./login.


https://watssec.github.io/cs453-s25/assets/modules/user-sec/auth/slides.pdf
https://watssec.github.io/cs453-s25/assets/modules/user-sec/auth/slides.pdf

If you use an interpreted language, make sure ./invert contains the cor-
rect shebang. If you use a compiled language, ./invert should be the
compiled binary.

e ./test
Runs an automated test on your invert implementation. It only runs a
single test case; if you want more test cases, you can manually generate
hashes using the hash function inside ./login and use them to replace
the content of password.txt, then run ./test again.

Other Files

e password.txt: Contains the hash used by ./login. A different hash
will be used during grading.

e rainbow_table.txt (Q3 only): Maps unsalted scrypt hashes to their cor-
responding passwords.

e pwdict.txt (Q4 only): A dictionary of possible passwords.

Problems

For Q1-Q4, write a short reflection in the ./writeup.txt file.

QO (0 points):

This is a warm-up where the password is stored in plaintext. A sample invert im-
plementation is provided, which simply returns its input. Try running ./login,
./invert, and ./test to familiarize yourself with the assignment setup.

Q1 (5 point):
This ./login uses a bad hash function. Implement invert to find a password
that matches the hash in password.txt.

Reflect on why this hash function is insecure; which property does this hash
function lack?

Q2 (5 point):

Similar to Q1, but with a different bad hash function.
Reflect on why this hash function is insecure; which property does this hash
function lack?


https://en.wikipedia.org/wiki/Shebang_(Unix)

Q3 (5 point):

This login uses a secure cryptographic function (scrypt) but without a salt. A
precomputed rainbow table is provided in rainbow_table.txt, and the pass-
word is guaranteed to be in it. Use it to implement invert.

Reflect on how a user can be protected from rainbow table attacks.

Q4 (5 point):

This problem uses a salted hash. A password dictionary is provided in pw_dict.txt,
and the correct password is among them. Implement invert by brute-forcing
with this dictionary.

Reflect on how the use of salt improves security; why is cracking hash harder
in Q4 than in Q3.

Deliverable

Package the entire assignment directory using zip -r cs453_ad.zip cs453_a4d
and submit it to the LEARN Dropbox.
Ensure the following files are included:

e Executable invert programs:
— ql/invert, q2/invert, q3/invert, q4/invert

e (Only if you use a compiled language) Source code of the invert programs;
briefly describe how to compile your program in ./writeup.txt. e.g.:

— ql/invert.c, g2/invert.c, q3/invert.c, q4/invert.c
o Write-up:

— ./writeup.txt



