
CS 453/698: Software and Systems Security

Meng Xu (University of Waterloo)

Module: Background
Lecture: Abstractions in OS, PL, and SE

Spring 2025



Intro Compiler

Outline

1 Introduction

2 Abstractions Done by Compilers

2 / 20



Intro Compiler

Layered abstraction

Modern computing systems are among the most complex systems
ever built.

One of the key engineering techniques that enables the construction
of such complex systems is the use of layered abstractions:

the system is designed as a stack of layers, where

each layer hides implementation details of lower layers.

3 / 20



Intro Compiler

Layered abstraction

Modern computing systems are among the most complex systems
ever built.

One of the key engineering techniques that enables the construction
of such complex systems is the use of layered abstractions:

the system is designed as a stack of layers, where

each layer hides implementation details of lower layers.

3 / 20



Intro Compiler

The hello-world example

1 #include <stdio.h>
2

3 int main(void) {
4 printf("Hello World");
5 return 0;
6 }

Compile:
cc hello-world.c

Execute:
./a.out

Q: What happens behind the scenes exactly?

4 / 20



Intro Compiler

The hello-world example

1 #include <stdio.h>
2

3 int main(void) {
4 printf("Hello World");
5 return 0;
6 }

Compile:
cc hello-world.c

Execute:
./a.out

Q: What happens behind the scenes exactly?

4 / 20



Intro Compiler

The hello-world example

1 #include <stdio.h>
2

3 int main(void) {
4 printf("Hello World");
5 return 0;
6 }

Compile:
cc hello-world.c

Execute:
./a.out

Q: What happens behind the scenes exactly?

4 / 20



Intro Compiler

The hello-world example

1 #include <stdio.h>
2

3 int main(void) {
4 printf("Hello World");
5 return 0;
6 }

Compile:
cc hello-world.c

Execute:
./a.out

Q: What happens behind the scenes exactly?

4 / 20



Intro Compiler

Von Neumann architecture

PC CIR AC MAR MDR

Registers

Arithmetic / Logic Unit

Control Unit

Central Processing Unit

Memory

Computer

Input Output

5 / 20



Intro Compiler

Von Neumann architecture

PC CIR AC MAR MDR

Registers

Arithmetic / Logic Unit

Control Unit

Central Processing Unit

Memory

Computer

Input Output

5 / 20



Intro Compiler

Program the low-level machine

Suppose there is a CPU instruction called
output <char>, with opcode 0B <char>,
which sends a single character <char> to the output device.

Q: How to display “Hello World” in the output device?

A: This is a multi-step process:
Step 1: Find a suitable memory location (e.g., address 0x0010)

Step 2: Put the following bytes into this memory location
0B 48 // ASCII code for ’H’

0B 65 // ASCII code for ’e’

. . .
0B 64 // ASCII code for ’d’

Step 3: Put value 0x0010 into the PC register.

6 / 20



Intro Compiler

Program the low-level machine

Suppose there is a CPU instruction called
output <char>, with opcode 0B <char>,
which sends a single character <char> to the output device.

Q: How to display “Hello World” in the output device?

A: This is a multi-step process:
Step 1: Find a suitable memory location (e.g., address 0x0010)

Step 2: Put the following bytes into this memory location
0B 48 // ASCII code for ’H’

0B 65 // ASCII code for ’e’

. . .
0B 64 // ASCII code for ’d’

Step 3: Put value 0x0010 into the PC register.

6 / 20



Intro Compiler

A simplified view of compilation and loading

In this overly simplified example, we consider

getting the bytes 0B 48 0B 65 ... 0B 64 from source code as
compilation, and

the rest as loading, including
1 Find a suitable memory location (e.g., address 0x0010)
2 Put the bytes 0B 48 0B 65 ... 0B 64 into this memory location
3 Put value 0x0010 into the PC register.

7 / 20



Intro Compiler

A simplified view of compilation and loading

In this overly simplified example, we consider

getting the bytes 0B 48 0B 65 ... 0B 64 from source code as
compilation, and

the rest as loading, including
1 Find a suitable memory location (e.g., address 0x0010)
2 Put the bytes 0B 48 0B 65 ... 0B 64 into this memory location
3 Put value 0x0010 into the PC register.

7 / 20



Intro Compiler

Reality is more complicated

However, in reality, things are way more complicated. But the
operating system, compiler, and software engineering practices
abstract the complications away.

8 / 20



Intro Compiler

Outline

1 Introduction

2 Abstractions Done by Compilers

9 / 20



Intro Compiler

A simple C program

1 #include <stdio.h>
2 #include <string.h>
3

4 int main(void) {
5 int pass = 0;
6 char buff[8];
7

8 printf("Enter the password: ");
9 gets(buff);

10

11 if(strcmp(buff, "warriors")) {
12 printf("Wrong password\n");
13 } else {
14 printf("Correct password\n");
15 pass = 1;
16 }
17

18 if(pass) {
19 printf ("Root privileges granted\n");
20 }
21 return 0;
22 }

Try with
gcc -m64 -fno-stack-protector

And password “golden-hawks”

10 / 20



Intro Compiler

A simple C program

1 #include <stdio.h>
2 #include <string.h>
3

4 int main(void) {
5 int pass = 0;
6 char buff[8];
7

8 printf("Enter the password: ");
9 gets(buff);

10

11 if(strcmp(buff, "warriors")) {
12 printf("Wrong password\n");
13 } else {
14 printf("Correct password\n");
15 pass = 1;
16 }
17

18 if(pass) {
19 printf ("Root privileges granted\n");
20 }
21 return 0;
22 }

Try with
gcc -m64 -fno-stack-protector

And password “golden-hawks”

10 / 20



Intro Compiler

Stack layout (Linux x86-64 convention)

1 long foo(
2 long a, long b, long c,
3 long d, long e, long f,
4 long g, long h)
5 {
6 long xx = a * b * c;
7 long yy = d + e + f;
8 long zz = bar(xx, yy, g + h);
9 return zz + 20;

10 }

h
g

return address

saved rbp

xx
yy

zz

High address

Low address

RBP + 24

RBP + 16

RBP + 8

RBP

RBP - 8

RBP - 16

RBP - 24

Argument a to f passed by registers.

11 / 20



Intro Compiler

Von Neumann architecture

PC CIR AC MAR MDR

Registers

Arithmetic / Logic Unit

Control Unit

Central Processing Unit

Memory

Computer

Input Output

12 / 20



Intro Compiler

Implications of the Von Neumann architecture

Code and data reside in the same memory space and can be
addressed in a unified way

- If you manage to get the PC register to point to a memory address
contains your logic, you have effectively hijacked the control flow.

There is only one unified memory. It is the job of the compiler /
programming language / runtime to find a way to utilize the
memory efficiently.

- Variables declared in a program (e.g., int i = 0;) need to be
mapped to an address in the memory, and the mapping logic needs
to be (ideally) consistent on the same architecture.

13 / 20



Intro Compiler

Implications of the Von Neumann architecture

Code and data reside in the same memory space and can be
addressed in a unified way

- If you manage to get the PC register to point to a memory address
contains your logic, you have effectively hijacked the control flow.

There is only one unified memory. It is the job of the compiler /
programming language / runtime to find a way to utilize the
memory efficiently.

- Variables declared in a program (e.g., int i = 0;) need to be
mapped to an address in the memory, and the mapping logic needs
to be (ideally) consistent on the same architecture.

13 / 20



Intro Compiler

Definition: memory

Q: What is a conventional way of dividing up the “memory”?

A: Four types of memory on a conceptual level:

Text (where program code is initially loaded to)

Stack

Heap

Global (a.k.a., static)

14 / 20



Intro Compiler

Definition: memory

Q: What is a conventional way of dividing up the “memory”?

A: Four types of memory on a conceptual level:

Text (where program code is initially loaded to)

Stack

Heap

Global (a.k.a., static)

14 / 20



Intro Compiler

Memory layout (Linux x86-64 convention)

Environment

Stack

Heap

BSS

Data

Text
Low address

High address

Read from program binary

Initialized to zero

15 / 20



Intro Compiler

Example

1 #include <stdlib.c>
2

3 //! where is this variable hosted?
4 const char *HELLO = "hello";
5

6 //! where is this variable hosted?
7 long counter;
8

9 void main() {
10 //! where is this variable hosted?
11 int val;
12

13 //! where is this variable hosted?
14 //! where is its content allocated?
15 char *msg = malloc(120);
16

17 //! what is freed here?
18 free(msg);
19

20 //! what is freed here (at end of function)?
21 }
22

23 //! what is freed here (at end of execution)?

16 / 20



Intro Compiler

Example (and answers)

1 #include <stdlib.c>
2

3 // this is in the data section
4 const char *HELLO = "hello";
5

6 // this is in the BSS section
7 long counter;
8

9 void main() {
10 // this is in the stack memory
11 int val;
12

13 // the msg pointer is in the stack memory
14 // the msg content is in the heap memory
15 char *msg = malloc(120);
16

17 // msg content is explicitly freed here
18 free(msg);
19

20 // the val and msg pointer is implicitly freed here
21 }
22

23 // the global memory is only destroyed on program exit

17 / 20



Intro Compiler

What is heap and why do we need it?

In C/C++, the heap is used to manually allocate (and free) new
regions of process memory during program execution.

18 / 20



Intro Compiler

Heap vs stack

1 typedef struct Response {
2 int status;
3 char message[40];
4 } response_t;
5

6 response_t *say_hello() {
7 response_t* res =
8 malloc(sizeof(response_t));
9 if (res != NULL) {

10 res->status = 200;
11 strncpy(res->message, "hello", 6);
12 }
13 return res;
14 }
15 void send_back(response_t *res) {
16 // implementation omitted
17 }
18 void process() {
19 response_t *res = say_hello();
20 send_back(res);
21 free(res);
22 }

1 typedef struct Response {
2 int status;
3 char message[40];
4 } response_t;
5

6 void say_hello(response_t *res) {
7 res->status = 200;
8 strncpy(res->message, "hello", 6);
9 }

10 void send_back(response_t *res) {
11 // implementation omitted
12 }
13 void process() {
14 struct Response res;
15 say_hello(&res);
16 send_back(&res);
17 }

A stack-based implementation of
(roughly) the same functionality

19 / 20



Intro Compiler

Heap vs stack

1 typedef struct Response {
2 int status;
3 char message[40];
4 } response_t;
5

6 response_t *say_hello() {
7 response_t* res =
8 malloc(sizeof(response_t));
9 if (res != NULL) {

10 res->status = 200;
11 strncpy(res->message, "hello", 6);
12 }
13 return res;
14 }
15 void send_back(response_t *res) {
16 // implementation omitted
17 }
18 void process() {
19 response_t *res = say_hello();
20 send_back(res);
21 free(res);
22 }

1 typedef struct Response {
2 int status;
3 char message[40];
4 } response_t;
5

6 void say_hello(response_t *res) {
7 res->status = 200;
8 strncpy(res->message, "hello", 6);
9 }

10 void send_back(response_t *res) {
11 // implementation omitted
12 }
13 void process() {
14 struct Response res;
15 say_hello(&res);
16 send_back(&res);
17 }

A stack-based implementation of
(roughly) the same functionality

19 / 20



Intro Compiler

⟨ End ⟩

20 / 20


	Introduction
	Abstractions Done by Compilers

