CS 453/698: Software and Systems Security

Module: Bug Finding Tools and Practices
Lecture: Fuzz testing (a.k.a., fuzzing)

Meng Xu (University of Waterloo)
Spring 2025



Intro
900000000

Outline

@ Introduction

2/27



Intro
0e000000

Program assurance

An eternal question behind all software developers’ mind:
how do | know that my code is correct and secure?

3/21



Intro
0e000000

Program assurance

An eternal question behind all software developers’ mind:
how do | know that my code is correct and secure?

o Existing practice: testing with manual effort

- a.k.a., unit tests, E2E tests, quality assurance, etc.

3/21



Intro
0e000000

Program assurance

An eternal question behind all software developers’ mind:
how do | know that my code is correct and secure?

o Existing practice: testing with manual effort

- a.k.a., unit tests, E2E tests, quality assurance, etc.
@ Emerging trend in practice: coverage-guided fuzzing

- i.e., automated, evolutionary, and random generation of test cases

3/21



Intro
0e000000

Program assurance

An eternal question behind all software developers’ mind:
how do | know that my code is correct and secure?

o Existing practice: testing with manual effort

- a.k.a., unit tests, E2E tests, quality assurance, etc.
@ Emerging trend in practice: coverage-guided fuzzing

- i.e., automated, evolutionary, and random generation of test cases
@ In research pipeline: symbolic execution

- i.e., automated, systematic, and deterministic exploration of search space

3/21



Intro
0e000000

Program assurance

An eternal question behind all software developers’ mind:
how do | know that my code is correct and secure?

Existing practice: testing with manual effort

- a.k.a., unit tests, E2E tests, quality assurance, etc.

Emerging trend in practice: coverage-guided fuzzing

- i.e., automated, evolutionary, and random generation of test cases

In research pipeline: symbolic execution
- i.e., automated, systematic, and deterministic exploration of search space

Latest development: concolic execution

- i.e., automated, efficient, and practical exploration of search space

3/21



Intro
[e]e] lelelele]e]

History: why do we call it “fuzzing”?

427



Intro
[e]e] lelelele]e]

History: why do we call it “fuzzing”?

In 80's, someone remotely logged into a unix system over a dial-up
network link during a storm.

The rain caused a lot of random noise on the dial-up link.

And these noise caused applications that were using data off the
dial-up network line to crash.

427



Intro
[e]e] lelelele]e]

History: why do we call it “fuzzing”?

In 80's, someone remotely logged into a unix system over a dial-up
network link during a storm.

The rain caused a lot of random noise on the dial-up link.

And these noise caused applications that were using data off the
dial-up network line to crash.

Gist of the story? — The rain tests the program way better than
human beings.

427



Intro
[e]e]e] lelele]e]

Evolution: from the rain-fuzzer to modern fuzzing

5/27


https://www.youtube.com/watch?v=zIkBYwdkuTk

Intro
[e]e]e] lelele]e]

Evolution: from the rain-fuzzer to modern fuzzing

The key is genetic algorithm.

Training a program to play the snake game with genetic algorithm

5/27


https://www.youtube.com/watch?v=zIkBYwdkuTk

Intro
[e]e]e]e] Telele]

A classical example

6/27



Intro
[e]e]e]e] Telele]

A classical example

1 pub fn hello_fuzzer(input: Vec<u8>) {

2 /* h %/

3 if input[0] == 0x48 {

4 /* e ¥/

5 if input[1] == 0x65 {

6 /*1 %/

7 if input[2] == Ox6¢c {

8 /* 1 %/

9 if input[3] == 0Ox6c {

10 /% o */

11 if input[4] == 0x6f {
12 panic! ("found the bug!");
13 }

14 }

15 }

16 }

17 }

18 }

6/27



Intro
[e]e]e]ele] lele]

Control-flow graph (CFG)

[INIT]
[BO]
? input[®] == 'h’ ?
NT
[B1]
? input[1] == ’e’ ?
NT
[B2]
? input[2] == '1’ 7

F NT
[B3]
? input[3] == '1’ 7
NT
[B4]
? input[4] == 'o’ ?
y’ NT

[return] [panic]
return bug!

7/21



Intro
[e]e]e]ele] lele]

Control-flow graph (CFG)

input: RES1dsfwl3

[INIT]
[BO]
? input[®] == 'h’ ?
NT
[B1]
? input[1] == ’e’ ?
NT
[B2]
? input[2] == '1’ 7
F NT
[B3]
? input[3] == '1’ 7
NT
[B4]
? input[4] == 'o’ 7
¥ NT
[return] [panic]
return bug!

7/21



Intro
[e]e]e]ele] lele]

Control-flow graph (CFG)

input: RES1dsfwl3

[INIT] input: sf32REWFr
¥
[BO]
? input[0] == 'h’ ?
NT
[B1]
? input[1] == ’e’ ?
NT
[B2]
? input[2] == "1’ ?

F NT
[B3]
? input[3] == '1’ 7
NT
[B4]
? input[4] == 'o’ 7
¥ T

[return] [panic]
return bug!

7/21



Intro
[e]e]e]ele] lele]

Control-flow graph (CFG)

input: RES1dsfwl3

[INIT] input: sf32REWFr
i input: 33rE
[BO]
? input[0] == 'h’ ?
NT
[B1]
? input[1] == ’e’ ?
T
[B2]
? input[2] == '1’ 7

F NT
[B3]
? input[3] == '1’ 7
NT
[B4]
? input[4] == 'o’ 7
¥ T

[return] [panic]
return bug!

7/21



Intro
[e]e]e]ele] lele]

Control-flow graph (CFG)

input: RES1dsfwl3

[INIT] input: sf32REWFr
i input: 33rE
Bop | e
? input[0] == 'h’ ?
NT
[B1]
? input[1] == ’e’ ?
T
[B2]
? input[2] == '1’ 7

F NT
[B3]
? input[3] == '1’ 7
NT
[B4]
? input[4] == 'o’ 7
¥ T

[return] [panic]
return bug!

7/21



Intro
[e]e]e]ele] lele]

Control-flow graph (CFG)

input: RES1dsfwl3

[INIT] input: sf32REWFr
i input: 33rE
=) M
? input[0] == 'h’ ? input: hMI32r3rD
NT
[B1]
? input[1] == ’e’ ?
NT
[B2]
7 input[2] == 1’ ?

F NT
[B3]
? input[3] == '1’ 7
NT
[B4]
? input[4] == 'o’ 7
¥ T

[return] [panic]
return bug!

7/21



Intro
[e]e]e]ele] lele]

Control-flow graph (CFG)

input: RES1dsfwl3

[INIT] input: sf32REWFr
i input: 33rE
=) M
? input[0] == 'h’ ? input: hMI32r3rD
ST 1] input: FDdsf2M
? input[1] == ’e’ ?
NT
[B2]
? input[2] == '1’ 7

F NT
[B3]
? input[3] == '1’ 7
NT
[B4]
? input[4] == 'o’ 7
¥ T

[return] [panic]
return bug!

7/21



Intro
[e]e]e]ele] lele]

Control-flow graph (CFG)

input: RES1dsfwl3

[INIT] input: sf32REWFr
i input: 33rE

=) M

? input[0] == 'h’ ? input: hMI32r3rD
ST 1] input: FDdsf2M
? input[1] = ’e’?| aaaaaa
NT
[B2]
? input[2] == '1’ 7

F NT
[B3]
? input[3] == '1’ 7
NT
[B4]
? input[4] == 'o’ 7
¥ T

[return] [panic]
return bug!

7/21



Intro
[e]e]e]ele] lele]

Control-flow graph (CFG)

input: RESldsfwl3

[INIT] input: sf32REWFr
i input: 33rE
BO]1 | e
? input[0] == 'h’ 7 input: hMI32r3rD
NT .
B1] input: FDdsf2M
? input[l1] == e’ ? | aaaaaas
NT input: hXI32r3rD
[B2]
? input[2] == '1'?
F NT
[B3]
? input[3] == '1’ 7
NT
[B4]
? input[4] == 'o’ 7
¥ T
[return] [panic]
return bug!

7/21



Intro
[e]e]e]ele] lele]

Control-flow graph (CFG)

input: RES1dsfwl3

[INIT] input: sf32REWFr
i input: 33rE
=) M
? input[0] == 'h’ ? input: hMI32r3rD
ST 1] input: FDdsf2M
?dinput[1] == ‘e’ 7| s
NT o input: hXI32r3rD

input: heI32r3rD

? input[2] == '1’ 7
F NT
[B3]
? input[3] == '1’ 7
NT
[B4]
? input[4] == 'o’ 7
¥ T
[return] [panic]
return bug!

7/21



Intro
[e]e]e]ele] lele]

Control-flow graph (CFG)

input: RES1dsfwl3

[INIT] input: sf32REWFr
i input: 33rE
=) M
? input[0] == 'h’ ? input: hMI32r3rD
ST 1] input: FDdsf2M
?dinput[1] == ‘e’ 7| s
NT o input: hXI32r3rD

input: heI32r3rD

? input[2] == '1’ 7
F NT O e,
[B3]
? input[3] == '1’ 7
NT
[B4]
? input[4] == 'o’ 7
¥ T

[return] [panic]
return bug!

7/21



Intro
[e]e]e]ele] lele]

Control-flow graph (CFG)

input: RES1dsfwl3

[INIT] input: sf32REWFr
i input: 33rE
=) M
? input[0] == 'h’ ? input: hMI32r3rD
ST 1] input: FDdsf2M
?dinput[1] == ‘e’ 7| s
NT o input: hXI32r3rD

input: heI32r3rD

? input[2] == 1’7
F NT O e,
B3 .
(53] input: he832r3rD
? input[3] == '1’ 7
NT
[B4]
? input[4] == 'o’ 7
¥ T
[return] [panic]
return bug!

7/21



Intro
[e]e]e]ele] lele]

Control-flow graph (CFG)

input: RES1dsfwl3

[INIT] input: sf32REWFr
i input: 33rE
=) M
? input[0] == 'h’ ? input: hMI32r3rD
ST 1] input: FDdsf2M
?dinput[1] == ‘e’ 7| s
NT o input: hXI32r3rD

input: heI32r3rD

? input[2] == 1’7
F NT e
B3 .
(53] input: he832r3rD
? input[3] == '1’ 7 .
~T input: hel32r3rD
[B4]
? input[4] == 'o’ 7
¥ T
[return] [panic]
return bug!

7/21



Intro
[e]e]e]ele] lele]

Control-flow graph (CFG)

input: RES1dsfwl3

[INIT] input: sf32REWFr
i input: 33rE
=) M
? input[0] == 'h’ ? input: hMI32r3rD
ST 1] input: FDdsf2M
?dinput[1] == ‘e’ 7| s
NT o input: hXI32r3rD

input: heI32r3rD

? input[2] == 1’7
F NT e
B3 .
(53] input: he832r3rD
? input[3] == '1’ 7 .
~T input: hel32r3rD
[B4]
? input[4] == 'o’ 7
¥ T
[return] [panic]
return bug!

7/21



Intro
[e]e]e]ele] lele]

Control-flow graph (CFG)

input: RESldsfwl3

[INIT] input: sf32REWFr
i input: 33rE
=) M
? input[0] == 'h’ ? input: hMI32r3rD
ST 1] input: FDdsf2M
?dinput[1] == ‘e’ 7| s
NT o input: hXI32r3rD

input: heI32r3rD

? input[2] == '1’ 7
F NT i

[B3] .
input: he832r3rD

? input[3] == '1’ 7 .
~T input: hel32r3rD

[B4]
? input[4] == 'o’ 7
¥ T .
[return] [panic] Test cases that yield

return bug! new COVerage are

called seeds. .



Intro
00000080

Feedback-guided evolution process

Seed Mutation Target System
Selection Strategy =
Instrumentation

Exf_:c‘htion Engine

Seed Test Case

sl ol L L (Feedback} @orrecmes§

Seed

{ Initial Seeds / Report

8/27



Intro
00000080

Feedback-guided evolution process

Seed Mutation Target System
Selection Strategy =
' Instrumentation

Execution E‘ngine
Seed Test Case & s
L L (Feedback} @orrecmes§

Seed

Seed Pool

{ Initial Seeds /

Natural selection — survival of the fittest

8/27



Intro
0000000e

Demo with AFL++

Acknowledgement: this demo is based on one of the examples
used in the "“Fuzzing with AFL" workshop by Michael Macnair.

9/27


https://github.com/mykter/afl-training

Coverage
00000000000000

Outline

@ Program state coverage: “natural selection” in the fuzzing world

10/27



Coverage
0@000000000000

Intuition: what makes a high-quality seed?

11/27



Coverage
0@000000000000

Intuition: what makes a high-quality seed?

19 }

pub fn foo(a: num, b: num) {

let c = if (a >= 0) {
1

} else {
2

};

// irrelevant operations
let d = if (b >= 0) {
2

} else {
3

b

// irrelevant operations

assert!(c != d);

Q: What is the testing plan?

J

11/27



Coverage

0@000000000000

Intuition: what makes a high-quality seed?

19 }

pub fn foo(a: num, b: num) {

let c = if (a >= 0) {
1

} else {
2

};

// irrelevant operations
let d = if (b >= 0) {
2

} else {
3

b

// irrelevant operations

assert!(c != d);

Q: What is the testing plan? )

Cover every line?
Cover every if-else branch?
Cover every exit status?

Cover every path?

11/27



Coverage
0@000000000000

Intuition: what makes a high-quality seed?

19 }

pub fn foo(a: num, b: num) {

let c = if (a >= 0) {
1

} else {
2

};

// irrelevant operations
let d = if (b >= 0) {
2

} else {
3

b

// irrelevant operations

assert!(c != d);

Q: What is the testing plan? )

Cover every line?
Cover every if-else branch?

Cover every exit status?

Cover every path?

— if the fuzzer generates an
input that expands the coverage,
that input is a good seed.

11/27



Coverage
00000000000000

lllustration of different coverage metrics

[BO]
1 pub fn foo(a: num, b: num) { a>=07?
2 let ¢ = if (a >= 0) { yd N
3 1 [B1] [B2]
4 } else { c=1 c =2
5 2 \ [B3] /
6 1
7 Y
8 // irrelevant operations [B4]
9 b>=07
10 let d = if (b >= 0) { . N
11 2 [BS5] [B6]
12 } else { _ _
13 3 d=2 \ / d=3
14 1 [B7]
15 Y
16 // irrelevant operations (B8]
17
18 assert!(c != d); cl=d?
19 } T "
[B9] [B10]
return panic

12/27



Coverage
000@0000000000

lllustration of different coverage metrics

[BO]
a>=07
C line? T N\
@ Lover every line! [B1] [B2]
- Block coverage c=1 c=2
\[33]‘/
@ Cover every if-else branch? -
[B4]
- Branch coverage
b>=07
T N\
. 6
@ Cover every exit status? (651 (6l
d=2 d=3
- Return coverage N - o
..v.
@ Cover every path? (B8]
- Path coverage cl=d?
I/ <
[B9] [B10]
return panic

13/27



Coverage
000@0000000000

lllustration of different coverage metrics

[BO]
a>=07
C line? T N\
@ Lover every line! [B1] [B2]
- Block coverage c=1 c=2
\[33]‘/
o Cover every if-else branch? -
[B4]
- Branch coverage
b>=07
T N\
. 6
@ Cover every exit status? (62l (56l
d=2 d=3
- Return coverage N - "
5
@ Cover every path? (B8]
- Path coverage cl=d?
I/ <
[B9] [B10]
return panic

13/27



Coverage
0000@000000000

Path coverage: a theoretical optimum

Claim: A program is saturately tested if we obtain a set of inputs
that covers every feasible path of the program CFG.

NOTE: feasible paths include paths that leads to explicit and
implicit panics.

14 /27



Coverage
00000@00000000

Path coverage demo

[B1] [B2]

[B9] b [B10]

return panic

15/27



Coverage
00000@00000000

Path coverage demo

[B1] [B2]

[B9] b [B10]

return panic

15/27



Coverage
00000@00000000

coverage demo

[BO]
a>=07?
T N\
[B1] [B2]
@a-=1, =1 c=1 c=2
\[33]/
@a=1b=-1
A4
[B4]
b>=07
T N\
[B5] [B6]
d=2 d=3
\[B7]/
-
[B8]
cl=d7
T W
[B9] [B10]
return panic

15/27



Coverage
00000@00000000

coverage demo

[BO]
a>=07?
T N
[B1] [B2]
ea=1b=1 c=1 c=2
\[33]/
@a=1b=-1
Y
@a=-1,b=1 [B4]
b>=07
T N
[B5] [B6]
d=2 d=3
\[B7]/
.
[B8]
cl=d7
T W
[B9] [B10]
return panic

15/27



Coverage
00000@00000000

coverage demo

[BO]
a>07?
T N\
[B1] [B2]
ea=1b=1 c=1 c=2
\[33] /
@a=1Db=-1
A4
@a=-1,b=1 [B4]
b>07
@a=-1,b=-1 < <
[B5] [B6]
d=2 d=3
\[371/
.
[B8]
cl=d7
T W
[B9] [B10]
return panic

15/27



Coverage
00000@00000000

coverage demo

@ea=1,b=1
@a=1,b=-1
@a=-1,b=1
@a=-1,b=-1

No new program behaviors can be
discovered = the program is
saturately tested

[B1]

[B9]

return

b [B10]

panic

15/27



Coverage
000000@e0000000

Why not path coverage in practice?

16/27



Coverage
000000@e0000000

Why not path coverage in practice?

Short answer: | don't know... AFL (American Fuzzy Lop) didn't
adopt path coverage, so everyone follows suite...

Long answer:

@ tracking block / branch coverage is stateless while tracking path
coverage requires stateful instrumentations.

o different parts of the execution are not necessarily related, i.e., a
new path does not necessarily mean interesting findings.

@ it is hard to quantitatively measure the completeness of path
coverage (because of infeasible paths). But by default, all
branches should be somewhat feasible.

16/27



Coverage
000000@e0000000

Why not path coverage in practice?

Short answer: | don't know... AFL (American Fuzzy Lop) didn't
adopt path coverage, so everyone follows suite...

Long answer:

@ tracking block / branch coverage is stateless while tracking path
coverage requires stateful instrumentations.

o different parts of the execution are not necessarily related, i.e., a
new path does not necessarily mean interesting findings.

@ it is hard to quantitatively measure the completeness of path
coverage (because of infeasible paths). But by default, all
branches should be somewhat feasible.

In practice, branch coverage hits a nice balance between
effectiveness and easiness of instrumentation.

16/27



Coverage
0000000@000000

What's wrong with branch coverage?

17/27



Coverage
0000000@000000

What's wrong with branch coverage?

@ea=1D>b=1
@a=-1,b=-1

Two seeds already covered most
of the branches.

[B1]

[B9]

return

b [B10]

panic

17/27



Coverage
0000000@000000

What's wrong with branch coverage?

@ea=1b=1 [B0]
= - _ a>=0°7?
@a=-1,b=-1 L <
Two seeds already covered most Bl (82
of the branches. c=1 c=2
NG - A
Oa:llb:—l [Bv4]
A seed that yields new path but is b>= 07
. . g N\
considered as a bad seed as it [85] (6]
yields no new branch coverage. d=2 d=3
NG - !
-
[B8]
cl=d7
17 W
[B9] [B10]
return panic

17/27



Coverage
0000000@000000

What's wrong with branch coverage?

@ea=1,b=1 [B0]

_ _ _ a>=07
@a=-1,b=-1 b L
Two seeds already covered most B (2]
of the branches. c=1 c=2

NG - A
@ea=1b=-1 [Bv4]
A seed that yields new path but is b>=07

. . T N\
considered as a bad seed as it 85] [86]
yields no new branch coverage. d=2 d=3

NG - !
= fuzzer is not rewarded by L
mutating a and b, hence, lowering (B8]
their priorities and the panic case T/C '=d?
may never be found, [89] B0
return panic

17/27



Coverage
0000000@000000

What's wrong with branch coverage?

@ea=1,b=1 [B0]

_ _ _ a>=07
@a=-1,b=-1 . <
Two seeds already covered most B [B2]
of the branches. c=1 c=2

NG - A
@ea=1b=-1 [Bv4]
A seed that yields new path but is b>=07

. . T N\
considered as a bad seed as it 85] [86]
yields no new branch coverage. d=2 d=3

NG - !
= fuzzer is not rewarded by L
mutating a and b, hence, lowering (B8]
their priorities and the panic case T/C '=d?
may never be found, especially [B9] B0
when fuzzing complex CFGs return panic

17/27



Coverage
0000000000000

Programs with loops: an example

1 // implementation of ‘calc’
2 fn calc(

3 X: ub4, y: u64, n: u64
4 ) -> (ub4, u64, u6d) {

5 leta=%x, b=y, 1i=0;
[ while (a < n) {
7
8
9

if (b > a) {
a++;

} else {
10 b++;
11 }
12 i++;
13 }
14 return (a, b, 1i);
15 }
1 // use the ‘calc’ function
2 pub fn main(Q) {
3 let (x, y, n) = /* input */;
4 let (a, b, i) = calc(x, y, n);
5 assert!(n-a-b+i != 42);
6 NNNANNNNVARRRRAR
7

18/27



Coverage
0000000000000

Programs with loops: an example

1 // implementation of ‘calc’

2 fn calc( o x=0, y=1, n=2 — a=2, b=2, i=3
3 X: ub4, y: u64, n: u64
4 ) -> (ub4, u64, u6d) {

5 leta=%x, b=y, 1i=0;
[ while (a < n) {
7
8
9

if (b > a) {
a++;

} else {
10 b++;
11 }
12 i++;
13 }
14 return (a, b, 1i);
15 }
1 // use the ‘calc’ function
2 pub fn main(Q) {
3 let (x, y, n) = /* input */;
4 let (a, b, i) = calc(x, y, n);
5 assert!(n-a-b+i != 42);
6 NNNANNNNVARRRRAR
7

18/27



Coverage
0000000000000

Programs with loops: an example

1 // implementation of ‘calc’

2 fn calc( @ x=0, y=1, n=2 — a=2, b=2, i=3
3 X: ub4, y: u64, n: u64

4 ) -> (u64, ub4, u64) { @ x=1, y=0, n=2 — a=2, b=2, i=3
5 leta=x, b=y, i=0;

[ while (a < n) {

7 if (b > a) {

8 a++;

9 } else {

10 b++;

11 }

12 i++;

13 }

14 return (a, b, 1i);

15 }

1 // use the ‘calc’ function

2 pub fn main(Q) {

3 let (x, y, n) = /* input */;
4 let (a, b, i) = calc(x, y, n);
5 assert!(n-a-b+i != 42);

6 NNANAAAARRARRRARRRRAR

7

18/27



Coverage
0000000000000

Programs with loops: an example

1 // implementation of ‘calc’

2 fn calc( @ x=0, y=1, n=2 — a=2, b=2, i=3
3 X: ub4, y: u64, n: u64

4 ) -> (u64, ub4, u64) { @ x=1, y=0, n=2 — a=2, b=2, i=3
5 leta=x, b=y, i=0;

6 while (a < n) { @ x=0, y=2, n=1 — a=1, b=2, i=1
7 if (b > a) {

8 a++; @ x=1, y=2, n=0 — a=1, b=2, i=0
9 } else {

10 b++;

11 }

12 i++;

13 }

14 return (a, b, 1i);

15 }

1 // use the ‘calc’ function

2 pub fn main(Q) {

3 let (x, y, n) = /* input */;

4 let (a, b, i) = calc(x, y, n);

5 assert!(n-a-b+i != 42);

6 NNANAAAARRARRRARRRRAR

7

18/27



Coverage
0000000000000

Programs with loops: an example

1 // implementation of ‘calc’

2 fn calc( @ x=0, y=1, n=2 — a=2, b=2, i=3
3 X: ub4, y: u64, n: u64

4 ) -> (u64, u64, ubd) { @ x=1, y=0, n=2 — a=2, b=2, i=3
5 leta=%x, b=y, 1i=0;

6 while (a < n) { @ x=0, y=2, n=1 — a=1, b=2, i=1
7 if (b > a) {

8 a++; @ x=1, y=2, n=0 — a=1, b=2, i=0
9 } else {

10 bi+; @ x=2, y=0, n=1 — a=2, b=0, i=0
11

12 LH @ x=2, y=1,n=0 — a=2, b=1, i=0
13 }

14 return (a, b, 1i); o ...

15 }

1 // use the ‘calc’ function

2 pub fn main(Q) {

3 let (x, y, n) = /* input */;

4 let (a, b, i) = calc(x, y, n);

5 assert!(n-a-b+i != 42);

6 NNANAAAARRARRRARRRRAR

7

18/27



Coverage
0000000000000

Programs with loops: an example

1 // implementation of ‘calc’

2 fn calc( @ x=0, y=1, n=2 — a=2, b=2, i=3
3 X: ub4, y: u64, n: u64

4 ) -> (u64, u64, ubd) { @ x=1, y=0, n=2 — a=2, b=2, i=3
5 leta=%x, b=y, 1i=0;

6 while (a < n) { @ x=0, y=2, n=1 — a=1, b=2, i=1
7 if (b > a) {

8 a++; @ x=1, y=2, n=0 — a=1, b=2, i=0
9 } else {

10 bt o x=2, y=0, n=1 — a=2, b=0, i=0
11

12 i++; @ x=2, y=1,n=0 — a=2, b=1, i=0
13 }

14 return (a, b, 1i); o ...

15 }

1 // use the ‘calc’ function . 2

> pub fn mainQ) 1 Q: When should fuzzing end? J
3 let (x, y, n) = /* input */;

4 let (a, b, i) = calc(x, y, n);

5 assert!(n-a-b+i != 42);

6 NNNVNANNNANNANNNNANNN

7

18/27



Coverage
0000000000000

Programs with loops: an example

1 // implementation of ‘calc’

2 fn calc( @ x=0, y=1, n=2 — a=2, b=2, i=3
3 X: ub4, y: u64, n: u64
4 ) -> (u64, u64, ubd) { @ x=1, y=0, n=2 — a=2, b=2, i=3
5 leta=%x, b=y, 1i=0;
6 while (a < n) { @ x=0, y=2, n=1 — a=1, b=2, i=1
7 if (b > a) {
8 a++; @ x=1, y=2, n=0 — a=1, b=2, i=0
9 } else {
10 bt @ x=2, y=0, n=1 — a=2, b=0, i=0
i; i++; @ x=2, y=1,n=0 — a=2, b=1, i=0
13 }
14 return (a, b, 1i); o ...
15 }
1 // use the ‘calc’ function . . 2
> pub fn mainQ) 1 Q: When should fuzzing end? J
3 let (x, y, n) = /* input */;

1 i) = 1 ;
§ a:zeﬁi;(giaf@ t ng v m A: The de facto answer is: when
6 NN achieved 100% code coverage.
7

18/27



Coverage

00000000 0e0000

CFG and code coverage

1

// implementation of ‘calc’

Figure: the control-flow graph (CFG) of

2 fn calc( function calc(..)

3 X: ub4, y: u64, n: u64

4 ) -> (u64, u64, u64) {

5 leta=x,b=y,1i=0; [INIT]

6 while (a < n) { a=xb=y;i=0

7 if (b > a) { \L

8 a++; [BO]

o }else { ?Ta<n?
" }bH; ey E e
12 i++; ?b>a? return
13} 4 NF

14 return (a, b, i); [B3] [B4]

o) e

1 // use the ‘calc® function i

2 pub fn main(Q) {

3 let (x, y, n) = /* input */;

4 let (a, b, i) = calc(x, y, n);

5 assert!(n-a-b+i != 42);

6 NNNVNANNNANNANNNNANNN

7

19/27



Coverage

00000000 0e0000

CFG and code coverage

1 // implementation of ‘calc’
2 fn calc(

3 X: ub4, y: u64, n: u64
4 ) -> (ub4, u64, u6d) {

5 leta=%x, b=y, 1i=0;
[ while (a < n) {
7
8
9

if (b > a) {
a++;
} else {
10 b++;
11 }
12 i++;
13 }
14 return (a, b, 1i);
15 }

Figure: the control-flow graph (CFG) of

function calc(..)

[INIT]
a=xb=y;i=0
[B0]
1}/, ?a <n?\\\g
[B1] [B2]
?7h>a? return
[83] 18]
a++ b++
\[le/

// use the ‘calc’ function

pub fn main() {
let (x, y, n) = /* input */;
let (a, b, i) = calc(x, y, n);
assert!(n-a-b+i != 42);

NANNANTNNANNN

N O Ot W N

100% code coverage usually means:

@ all nodes in the CFG, or
@ all edges in the CFG

19/27



Coverage
0000000000 e000

100% coverage does not imply a worry-free program

1 // implementation of ‘calc’
2 fn calc(

3 X: ub4, y: u64, n: u64

4 ) -> (ub4, u64, u6d) {

5 leta=%x, b=y, 1i=0;

[ while (a < n) {

7 if (b > a) {

8 a++;

9 } else {

10 b++;

11 }

12 i++;

13 }

14 return (a, b, 1i);

15 }

1 // use the ‘calc’ function

2 pub fn main(Q) {

3 let (x, y, n) = /* input */;
4 let (a, b, i) = calc(x, y, n);
5 assert!(n-a-b+i != 42);

6 NNANAAAARRARRRARRRRAR

7

20/27



Coverage
0000000000 e000

100% coverage does not imply a worry-free program

1 // implementation of ‘calc’
2 fn calc(

3 X: ub4, y: u64, n: u64

4 ) -> (ub4, u64, u6d) {

5 leta=%x, b=y, 1i=0;

[ while (a < n) {

7 if (b > a) { .

s arts @ x=0, y=1, n=2 — a=2, b=2, i=3
DO o x=1, y=0, n=2 — a=2, b=2, i=3
ner o x=0, y=2, n=1 — a=1, b=2, i=1
12 1++;

13 } _ _ _ _ 9 i_
1+ return (a, b, 1) @ x=1, y=2, n=0 — a=1, b=2, i=0
15} @ x=2, y=0, n=1 — a=2, b=0, i=0
1 // use the ‘calc’ function @ x=2, y=1,n=0 — a=2, b=1, i=0
2 pub fn main(Q) {

3 let (x, y, n) = /* input */;

4 let (a, b, i) = calc(x, y, n);

5 assert!(n-a-b+i != 42);

6 NN

7

20/27



Coverage
0000000000080

Reason: loop unrolling yields new components in CFG

a=x
b=y
i=0
?7a<n? \E
[B1] [B2]
?7h>av? return
Tl (84]
a++
\ 53] P b++
i++
[B0-1]
7a<n?
[B1.1] V [B2-1]
?7b>a? return
Ty N
[B3-1] [B41]
a++
NS (B5.1] P b++

i++ 21/27



Coverage
0000000000008

Reason: loop unrolling yields new components in CFG




Coverage
000000000000 0e

Reason: loop unrolling yields new components in CFG

=

23/27



Conclusion
@000

Outline

© Conclusion

24 /27



Conclusion
[e] Tele}

The goal of fuzzing

Q: What is fuzzing doing essentially? Try to describe it in a way
that is as abstract/general as possible. J

25/27



Conclusion
[e] Tele}

The goal of fuzzing

Q: What is fuzzing doing essentially? Try to describe it in a way
that is as abstract/general as possible. J

A: To drive the execution of a system into desired states. )

25/27



Conclusion
[e]e] e}

Elaborating on the definition

@ What is special about the target system?

e Do we know the source code?
e Do we know the input format?
e What are the challenges when executing the “system"?

@ What do we mean by a state?
o How can we tell that one state is different from another?

@ What do we mean by desired?

o New/unseen behavior?
o Closeness to targeted execution points?

@ What do we mean by driving the execution?

e What can possibly be one mutation?
e How do you select the next mutation?

26/27



( End )

27 /27



	Introduction
	Program state coverage: ``natural selection'' in the fuzzing world
	Conclusion

