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Intro Coverage Conclusion

Program assurance

An eternal question behind all software developers’ mind:
how do I know that my code is correct and secure?

Existing practice: testing with manual effort

- a.k.a., unit tests, E2E tests, quality assurance, etc.

Emerging trend in practice: coverage-guided fuzzing

- i.e., automated, evolutionary, and random generation of test cases

In research pipeline: symbolic execution

- i.e., automated, systematic, and deterministic exploration of search space

Latest development: concolic execution
- i.e., automated, efficient, and practical exploration of search space
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Intro Coverage Conclusion

History: why do we call it “fuzzing”?

In 80’s, someone remotely logged into a unix system over a dial-up
network link during a storm.

The rain caused a lot of random noise on the dial-up link.

And these noise caused applications that were using data off the
dial-up network line to crash.

Gist of the story? — The rain tests the program way better than
human beings.
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Evolution: from the rain-fuzzer to modern fuzzing

The key is genetic algorithm.

Training a program to play the snake game with genetic algorithm
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https://www.youtube.com/watch?v=zIkBYwdkuTk
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Intro Coverage Conclusion

A classical example

1 pub fn hello_fuzzer(input: Vec<u8>) {
2 /* h */
3 if input[0] == 0x48 {
4 /* e */
5 if input[1] == 0x65 {
6 /* l */
7 if input[2] == 0x6c {
8 /* l */
9 if input[3] == 0x6c {

10 /* o */
11 if input[4] == 0x6f {
12 panic!("found the bug!");
13 }
14 }
15 }
16 }
17 }
18 }
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Control-flow graph (CFG)

[INIT]

-

[B0]

? input[0] == ’h’ ?

[B1]

? input[1] == ’e’ ?

[B2]

? input[2] == ’l’ ?

[B3]

? input[3] == ’l’ ?

[B4]

? input[4] == ’o’ ?

[panic]

bug!

[return]

return

T

T

T

T

T

F

F

F

F

F

input: RESldsfw13
input: sf32REWFr
input: 33rE
......

input: hMI32r3rD
input: FDdsf2M
......

input: hXI32r3rD
input: heI32r3rD
......

input: he832r3rD
input: hel32r3rD
......

Test cases that yield
new coverage are
called seeds.
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Feedback-guided evolution process

Seed Pool Seed Test Case
Execution Engine

Feedback Correctness

Initial Seeds

Seed 
Selection

Mutation 
Strategy Target System

Instrumentation

Report
SeedGood 

Seed ? Violations

Yes

Natural selection — survival of the fittest
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Intro Coverage Conclusion

Demo with AFL++

Acknowledgement: this demo is based on one of the examples
used in the “Fuzzing with AFL” workshop by Michael Macnair.
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Intro Coverage Conclusion

Intuition: what makes a high-quality seed?

1 pub fn foo(a: num, b: num) {
2 let c = if (a >= 0) {
3 1
4 } else {
5 2
6 };
7

8 // irrelevant operations
9

10 let d = if (b >= 0) {
11 2
12 } else {
13 3
14 };
15

16 // irrelevant operations
17

18 assert!(c != d);
19 }

Q: What is the testing plan?

Cover every line?

Cover every if-else branch?

Cover every exit status?

Cover every path?

=⇒ if the fuzzer generates an
input that expands the coverage,
that input is a good seed.
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Illustration of different coverage metrics

1 pub fn foo(a: num, b: num) {
2 let c = if (a >= 0) {
3 1
4 } else {
5 2
6 };
7

8 // irrelevant operations
9

10 let d = if (b >= 0) {
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12 } else {
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18 assert!(c != d);
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. . .
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d = 2

[B6]

d = 3

[B7]

. . .

[B8]

c != d ?

[B9]

return

[B10]

panic

T F

T F

T F
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Intro Coverage Conclusion

Path coverage: a theoretical optimum

Claim: A program is saturately tested if we obtain a set of inputs
that covers every feasible path of the program CFG.

NOTE: feasible paths include paths that leads to explicit and
implicit panics.
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Path coverage demo

a = 1, b = 1

a = 1, b = -1

a = -1, b = 1

a = -1, b = -1

No new program behaviors can be
discovered =⇒ the program is
saturately tested
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Intro Coverage Conclusion

Why not path coverage in practice?

Short answer: I don’t know... AFL (American Fuzzy Lop) didn’t
adopt path coverage, so everyone follows suite...

Long answer:

tracking block / branch coverage is stateless while tracking path
coverage requires stateful instrumentations.

different parts of the execution are not necessarily related, i.e., a
new path does not necessarily mean interesting findings.

it is hard to quantitatively measure the completeness of path
coverage (because of infeasible paths). But by default, all
branches should be somewhat feasible.

In practice, branch coverage hits a nice balance between
effectiveness and easiness of instrumentation.

16 / 27



Intro Coverage Conclusion

Why not path coverage in practice?

Short answer: I don’t know... AFL (American Fuzzy Lop) didn’t
adopt path coverage, so everyone follows suite...

Long answer:

tracking block / branch coverage is stateless while tracking path
coverage requires stateful instrumentations.

different parts of the execution are not necessarily related, i.e., a
new path does not necessarily mean interesting findings.

it is hard to quantitatively measure the completeness of path
coverage (because of infeasible paths). But by default, all
branches should be somewhat feasible.

In practice, branch coverage hits a nice balance between
effectiveness and easiness of instrumentation.

16 / 27



Intro Coverage Conclusion

Why not path coverage in practice?

Short answer: I don’t know... AFL (American Fuzzy Lop) didn’t
adopt path coverage, so everyone follows suite...

Long answer:

tracking block / branch coverage is stateless while tracking path
coverage requires stateful instrumentations.

different parts of the execution are not necessarily related, i.e., a
new path does not necessarily mean interesting findings.

it is hard to quantitatively measure the completeness of path
coverage (because of infeasible paths). But by default, all
branches should be somewhat feasible.

In practice, branch coverage hits a nice balance between
effectiveness and easiness of instrumentation.

16 / 27



Intro Coverage Conclusion

What’s wrong with branch coverage?

a = 1, b = 1

a = -1, b = -1

Two seeds already covered most
of the branches.

a = 1, b = -1

A seed that yields new path but is
considered as a bad seed as it
yields no new branch coverage.

=⇒ fuzzer is not rewarded by
mutating a and b, hence, lowering
their priorities and the panic case
may never be found,

especially
when fuzzing complex CFGs
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Intro Coverage Conclusion

Programs with loops: an example

1 // implementation of `calc`
2 fn calc(
3 x: u64, y: u64, n: u64
4 ) -> (u64, u64, u64) {
5 let a = x, b = y, i = 0;
6 while (a < n) {
7 if (b > a) {
8 a++;
9 } else {

10 b++;
11 }
12 i++;
13 }
14 return (a, b, i);
15 }

1 // use the `calc` function
2 pub fn main() {
3 let (x, y, n) = /* input */;
4 let (a, b, i) = calc(x, y, n);
5 assert!(n-a-b+i != 42);
6 \\\\\\\\\\\\\\\\\\\\\\\
7 }

x=0, y=1, n=2 → a=2, b=2, i=3

x=1, y=0, n=2 → a=2, b=2, i=3

x=0, y=2, n=1 → a=1, b=2, i=1

x=1, y=2, n=0 → a=1, b=2, i=0

x=2, y=0, n=1 → a=2, b=0, i=0

x=2, y=1, n=0 → a=2, b=1, i=0

. . . . . .

Q: When should fuzzing end?

A: The de facto answer is: when
achieved 100% code coverage.
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CFG and code coverage
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Figure: the control-flow graph (CFG) of

function calc(..)
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100% code coverage usually means:

all nodes in the CFG, or

all edges in the CFG
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100% coverage does not imply a worry-free program
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Intro Coverage Conclusion

The goal of fuzzing

Q: What is fuzzing doing essentially? Try to describe it in a way
that is as abstract/general as possible.

A: To drive the execution of a system into desired states.
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Intro Coverage Conclusion

Elaborating on the definition

What is special about the target system?

Do we know the source code?
Do we know the input format?
What are the challenges when executing the “system”?

What do we mean by a state?

How can we tell that one state is different from another?

What do we mean by desired?

New/unseen behavior?
Closeness to targeted execution points?

What do we mean by driving the execution?

What can possibly be one mutation?
How do you select the next mutation?
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Intro Coverage Conclusion

⟨ End ⟩

27 / 27


	Introduction
	Program state coverage: ``natural selection'' in the fuzzing world
	Conclusion

