CS 453/698: Software and Systems Security

Module: Bug Finding Tools and Practices

Lecture: Static analysis

Meng Xu (University of Waterloo) Spring 2025

Outline

- Declarative programming
- 2 Introduction to abstraction interpretation
- Reaching fixedpoint: joining, widening, and narrowing

A significant portion of software security research is based on the following observation:

If the program contains some specific code pattern, that program is more likely to be vulnerable.

- e.g., malloc with strlen as size
- e.g., strcpy taking a user-supplied src argument

A significant portion of software security research is based on the following observation:

If the program contains some specific code pattern, that program is more likely to be vulnerable.

- e.g., malloc with strlen as size
- e.g., strcpy taking a user-supplied src argument

Q: How do you precisely define and express this code pattern?

A significant portion of software security research is based on the following observation:

If the program contains some specific code pattern, that program is more likely to be vulnerable.

- e.g., malloc with strlen as size
- e.g., strcpy taking a user-supplied src argument

Q: How do you precisely define and express this code pattern?

A: Declarative programming, e.g., Datalog and CodeQL, is an option

Programming paradigm: imperative vs declarative

Programming paradigm: imperative vs declarative

Declarative programming is a paradigm describing WHAT the program knows and does, without explicitly specifying its algorithm.

Imperative programming is a paradigm describing HOW the program should do something by explicitly specifying each instruction (or state transition) step by step.

Baking a chocolate cake

The imperative way

- mix flour, sugar, cocoa powder, baking soda, and salt
- add milk, vegetable oil, eggs, and vanilla to form the batter
- preheat the oven at 180°C
- put the batter in a cake pan and bake for 30 minutes

The declarative way

- cake = batter + 180°C oven + 30 minutes backing
- batter = solid ingredients + liquid ingredients
- solid ingredients = flour, sugar, cocoa powder, baking soda, and salt
- fluid ingredients = milk, vegetable oil, eggs, and vanilla

Finding a vulnerability

The imperative way

- for each function in the program, search for a strcpy call in the function body
- trace back how the src argument in the strcpy call is derived (via def-use analysis)
- for any ancestor in the trace, if it comes from untrusted user-controlled input, mark the strcpy call as vulnerable

The declarative way

- program = [function]
- function = [instruction] (per each function)
- defines(var, instruction)
- uses(instruction, var)
- is_user_controlled(var)
- is_strcpy_vuln = strcpy(..., src)
 - + defines(src, i_src)
 - $+ uses(i_src, x)$
 - + $defines(x, i_x)$
 - + uses(i_x, var)
 - + *is_user_controlled*(var)

A new trend: declarative vulnerability finding

Recent years have observed a new trend in applying declarative-alike tooling in finding security vulnerabilities.

A new trend: declarative vulnerability finding

Recent years have observed a new trend in applying declarative-alike tooling in finding security vulnerabilities.

The (arguably) most promininent example is CodeQL, a commercial tool developed by Semmle, which was acquired by GitHub in 2019.

A new trend: declarative vulnerability finding

Recent years have observed a new trend in applying declarative-alike tooling in finding security vulnerabilities.

The (arguably) most promininent example is CodeQL, a commercial tool developed by Semmle, which was acquired by GitHub in 2019.

Other use cases include:

- Gigahorse
- Vandle
- Securify 2.0

CodeQL example

```
1 import cpp
  import semmle.code.cpp.controlflow.SSA
3
  class MallocCall extends FunctionCall
5
       MallocCall() { this.getTarget().hasGlobalName("malloc") }
6
       Expr getAllocatedSize() {
           if this getArgument(0) instanceof VariableAccess then
9
               exists(LocalScopeVariable v, SsaDefinition ssaDef
10
                   result = ssaDef.getAnUltimateDefiningValue(v)
11
                   and this.getArgument(0) = ssaDef.getAUse(v))
12
           else
13
               result = this.getArgument(0)
14
15
16 }
17
  from MallocCall malloc
  where malloc.getAllocatedSize() instanceof StrlenCall
  select malloc, "This allocation does not include space to null-terminate."
```

Other areas of program analysis

Declarative programming, especially Datalog, has also been widely used in other program analysis areas, including

- DOOP points-to analysis (for Java)
- cclyzer++ points-to analysis (for LLVM)
- DDisasm disassembler

Reasons to use declarative programming for static analysis

Precise definition of bug patterns can be beneficial:

- e.g., compare with another code pattern
- e.g., inter-op / composite with code patterns
- e.g., scale to more codebases
- e.g., argue for soundness / completeness

Outline

- Declarative programming
- 2 Introduction to abstraction interpretation
- 3 Reaching fixedpoint: joining, widening, and narrowing

A significant portion of software security research is related to program analysis:

- derive properties which hold for program P (i.e., inference)
- prove that some property holds for program P (i.e., verification)
- given a program P, generate a program P' which is
 - in most ways equivalent to P
 - behaves better than P w.r.t some criteria
 - (i.e., transformation)

A significant portion of software security research is related to program analysis:

- ullet derive properties which hold for program P (i.e., inference)
- \bullet prove that some property holds for program P (i.e., verification)
- ullet given a program P, generate a program P' which is
 - in most ways equivalent to P
 - behaves better than ${\cal P}$ w.r.t some criteria

(i.e., transformation)

Abstract interpretation provides a formal framework for developing program analysis tools.

Consider detecting that one branch will not be taken in: int $x,y,z; \quad y:=read(file); \quad x:=y*y;$ if $x \geq 0$ then z:=1 else z:=0

Consider detecting that one branch will not be taken in:

```
\begin{array}{ll} \textbf{int} \ x,y,z; \quad y := read(file); \quad x := y * y; \\ \textbf{if} \ x \ > \ 0 \ \textbf{then} \ z := 1 \ \textbf{else} \ z := 0 \end{array}
```

- Exhaustive analysis in the standard domain: non-termination
- Human reasoning about programs uses abstractions: signs, order of magnitude, odd/even, ...

Consider detecting that one branch will not be taken in:

```
int x, y, z; y := read(file); x := y * y; if x > 0 then z := 1 else z := 0
```

- Exhaustive analysis in the standard domain: non-termination
- Human reasoning about programs uses abstractions: signs, order of magnitude, odd/even, ...

Basic idea: use approximate (generally finite) representations of computational objects to make the problem of program dataflow analysis tractable.

Abstract interpretation is a formalization of the above procedure:

- define a non-standard semantics which can approximate the meaning (or behaviour) of the program in a finite way
- expressions are computed over an approximate (abstract) domain rather than the concrete domain (i.e., meaning of operators has to be reconsidered w.r.t. this new domain)

Example: integer sign arithmetic

Consider the domain D=Z (integers) and the multiplication operator: $*:Z^2\to Z$

We define an "abstract domain:" $D_{\alpha} = \{[-], [+]\}$ and abstract multiplication: $*_{\alpha} : D_{\alpha}^2 \to D_{\alpha}$ defined by:

$*_{\alpha}$	[-]	[+]
[-]	[+]	[-]
[+]	[-]	[+]

Example: integer sign arithmetic

Consider the domain D=Z (integers) and the multiplication operator: $*:Z^2\to Z$

We define an "abstract domain:" $D_{\alpha} = \{[-], [+]\}$ and abstract multiplication: $*_{\alpha} : D_{\alpha}^2 \to D_{\alpha}$ defined by:

$*_{\alpha}$	[-]	[+]
[-]	[+]	[-]
[+]	[-]	[+]

This allows us to conclude, for example, that $y=x^2=x\ast x$ is never negative.

Some observations

- The basis is that whenever we have z=x*y then: if $x,y\in Z$ are approximated by $x_{\alpha},y_{\alpha}\in D_{\alpha}$ then $z\in Z$ is approximated by $z_{\alpha}=x_{\alpha}*_{\alpha}y_{\alpha}$
 - Essentially, we map from an unbounded domain to a finite domain.
- It is important to formalize this notion of approximation, in order to be able to reason/prove that the analysis is correct.
- Approximate computation is generally less precise but faster (hence the tradeoff).

Example: integer sign arithmetic (refined)

Again, D = Z (integers) and: $*: Z^2 \to Z$

We can define a more refined "abstract domain" $D'_{\alpha} = \{[-], [0], [+]\}$

and the corresponding abstract multiplication: $*_{\alpha}: D'_{\alpha}^2 \to D'_{\alpha}$

$*_{\alpha}$	[-]	[0]	[+]
[-]	[+]	[0]	[-]
[0]	[0]	[0]	[0]
[+]	[-]	[0]	[+]

Example: integer sign arithmetic (refined)

Again, D = Z (integers) and: $*: Z^2 \to Z$

We can define a more refined "abstract domain" $D'_{\alpha} = \{[-], [0], [+]\}$

and the corresponding abstract multiplication: $*_{\alpha}: D'_{\alpha}^2 \to D'_{\alpha}$

$*_{\alpha}$	[-]	[0]	[+]
[-]	[+]	[0]	[-]
[0]	[0]	[0]	[0]
[+]	[-]	[0]	[+]

This allows us to conclude, for example, that z = y * (0 * x) is zero.

More observations

- There is a degree of freedom in defining different abstract operators and domains.
- The minimal requirement is that they be "safe" or "correct".
- Different "safe" definitions result in different kinds of analysis.

Again, D = Z (integers) and now we want to define the addition operator $+: Z^2 \to Z$

Again, D=Z (integers) and now we want to define the addition operator $+:Z^2\to Z$

We cannot use $D'_{\alpha}=\{[-],[0],[+]\}$ because we wouldn't know how to represent the result of $[+]+_{\alpha}[-]$, (i.e., the abstract addition would not be closed).

Again, D=Z (integers) and now we want to define the addition operator $+:Z^2\to Z$

We cannot use $D'_{\alpha}=\{[-],[0],[+]\}$ because we wouldn't know how to represent the result of $[+]+_{\alpha}[-]$, (i.e., the abstract addition would not be closed).

Solution: introduce a new element " \top " in the abstract domain as an approximation of any integer.

New "abstract domain": $D'_{\alpha} = \{[-], [0], [+], \top\}$

Abstract
$$+_{\alpha}: D'_{\alpha}^{2} \to D'_{\alpha}$$

$+_{\alpha}$	[-]	[0]	[+]	Τ
[-]	[-]	[-]	Η	Τ
[0]	[-]	[0]	[+]	\top
[+]	T	[+]	[+]	T
T	T	T	Τ	T

Abstract $*_{\alpha}: D'_{\alpha}^2 \to D'_{\alpha}$

$*_{\alpha}$	[-]	[0]	[+]	Т
[-]	[+]	[0]	[-]	Т
[0]	[0]	[0]	[0]	[0]
[+]	[-]	[0]	[+]	T
T	T	[0]	Т	Т

New "abstract domain": $D'_{\alpha} = \{[-], [0], [+], \top\}$

Abstract
$$+_{\alpha}: D'_{\alpha}^{2} \to D'_{\alpha}$$

$+_{\alpha}$	[-]	[0]	[+]	Η
[-]	[-]	[-]	\vdash	\vdash
[0]	[-]	[0]	[+]	Т
[+]	T	[+]	[+]	Т
Τ	T	T	T	Т

Abstract $*_{\alpha}: D'_{\alpha}^2 \to D'_{\alpha}$

$*_{\alpha}$	[-]	[0]	[+]	Т
[-]	[+]	[0]	[-]	Т
[0]	[0]	[0]	[0]	[0]
[+]	[-]	[0]	[+]	T
T	T	[0]	Т	T

We can now reason that $z = x^2 + y^2$ is never negative

Decl

More observations

- In addition to the imprecision due to the coarseness of D_{α} , the abstract versions of the operations (dependent on D_{α}) may introduce further imprecision
- Thus, the choice of abstract domain and the definition of the abstract operators are crucial.

Concerns in abstract interpretation

• Required:

- Correctness safe approximations: the analysis should be "conservative" and errs on the "safe side"
- Termination compilation should definitely terminate
 (note: not always the case in everyday program analysis tools!)

- Desirable "practicality":
 - Efficiency in practice finite analysis time is not enough: finite and small is the requirement.
 - Accuracy too many false alarms is harmful to the adoption of the analysis tool ("the boy who cried wolf").
 - Usefulness determines which information is worth collecting.

Outline

- Declarative programming
- 2 Introduction to abstraction interpretation
- 3 Reaching fixedpoint: joining, widening, and narrowing

Abstract domain example: intervals

Consider the following abstract domain for $x \in Z$ (integers):

$$x = [a, b]$$
 where

- a can be either a constant or $-\infty$ and
- b can be either a constant or ∞ .

Abstract domain example: intervals

Consider the following abstract domain for $x \in Z$ (integers):

$$x = [a, b]$$
 where

- a can be either a constant or $-\infty$ and
- b can be either a constant or ∞ .

Example:

$$\begin{aligned} & \{x^\# = [0,3], \ y^\# = [0,2] \} \\ & \mathbf{z} = \mathbf{2} \ ^* \ \mathbf{x} + \mathbf{4} \ ^* \ \mathbf{y} \\ & \{z^\# = 2 \times^\# [0,3] +^\# \mathbf{4} \times^\# [0,2] = [0,14] \} \end{aligned}$$

Abstract domain example: intervals

Consider the following abstract domain for $x \in Z$ (integers):

$$x = [a, b]$$
 where

- a can be either a constant or $-\infty$ and
- b can be either a constant or ∞ .

Example:

$$\begin{aligned} & \{x^\# = [0,3], \ y^\# = [0,2]\} \\ & \mathbf{z} = \mathbf{2} \ ^* \ \mathbf{x} + \mathbf{4} \ ^* \ \mathbf{y} \\ & \{z^\# = 2 \times^\# [0,3] +^\# \mathbf{4} \times^\# [0,2] = [0,14]\} \end{aligned}$$

Q: Why $z^{\#}$ is an abstraction of z?

Join operator

The join operator \sqcup merges two or more abstract states into one abstract state.

$$\{x^{\#} = [0, 10]\}$$
if $(x < 0)$ then
$$s := -1$$
else if $(x > 0)$ then
$$s := 1$$

s := 0

```
\{x^{\#} = [0, 10]\}
if (x < 0) then
   \{x^\# = \emptyset\}
   s := -1
   \{x^\# = \emptyset, \, s^\# = \emptyset\}
else if (x > 0) then
   s := 1
else
   s := 0
```

```
\{x^{\#} = [0, 10]\}
if (x < 0) then
   \{x^{\#} = \emptyset\}
   s := -1
   \{x^{\#} = \emptyset, s^{\#} = \emptyset\}
else if (x > 0) then
   \{x^{\#} = [1, 10]\}
   s := 1
   \{x^{\#} = [1, 10], s^{\#} = [1, 1]\}
else
    s := 0
```

```
\{x^{\#} = [0, 10]\}
if (x < 0) then
   \{x^{\#} = \emptyset\}
   s := -1
    \{x^{\#} = \emptyset, s^{\#} = \emptyset\}
else if (x > 0) then
   \{x^{\#} = [1, 10]\}
   s := 1
   \{x^{\#} = [1, 10], s^{\#} = [1, 1]\}
else
   \{x^{\#} = [0,0]\}
   s := 0
    \{x^{\#} = [0,0], s^{\#} = [0,0]\}
```

```
\{x^{\#} = [0, 10]\}
if (x < 0) then
    \{x^\# = \emptyset\}
    s := -1
    \{x^{\#} = \emptyset, s^{\#} = \emptyset\}
else if (x > 0) then
    \{x^{\#} = [1, 10]\}
    s := 1
    \{x^{\#} = [1, 10], s^{\#} = [1, 1]\}
else
   \{x^\# = [0,0]\}
    s := 0
    \{x^{\#} = [0,0], s^{\#} = [0,0]\}
\{x^{\#} = \emptyset \sqcup [1, 10] \sqcup [0, 0] = [0, 10], \ s^{\#} = \emptyset \sqcup [1, 1] \sqcup [0, 0] = [0, 1]\}
```

```
\{x^{\#} = \emptyset\}
x := 0
while (x < 100) {
x := x + 2
```

```
 \begin{split} &\{x^{\#} = \emptyset\} \\ &\mathbf{x} := \mathbf{0} \\ &\{x^{\#} = \langle even \rangle\} \\ & \text{while } (\mathbf{x} < \mathbf{100}) \ \{ \\ &\{x^{\#} = \langle even \rangle\}_1 \\ &\mathbf{x} := \mathbf{x} + 2 \\ &\{x^{\#} = \langle even \rangle\}_1 \\ \} \end{split}
```

```
 \begin{aligned} &\{x^\# = \emptyset\} \\ &\mathbf{x} := \mathbf{0} \\ &\{x^\# = \langle even \rangle\} \\ & \text{while } (\mathbf{x} < \mathbf{100}) \ \{ \\ &\{x^\# = \langle even \rangle\}_1 \\ &\mathbf{x} := \mathbf{x} + 2 \\ &\{x^\# = \langle even \rangle\}_1 \\ \} \\ &\{x^\# = \langle even \rangle\} \end{aligned}
```

Two iterations to reach fixedpoint (i.e., none of the abstract states changes).

```
\{x^{\#} = \emptyset\}
x := 0
while (x < 100) {
x := x + 2
```

```
 \begin{aligned} &\{x^{\#} = \emptyset\} \\ &\mathbf{x} := \mathbf{0} \\ &\{x^{\#} = [0, 0]\} \\ &\mathbf{while} \ (\mathbf{x} < \mathbf{100}) \ \{ \\ &\{x^{\#} = [0, 0]\}_1 \quad \{x^{\#} = [0, 0] \sqcup [2, 2] = [0, 2]\}_2 \\ &\mathbf{x} := \mathbf{x} + 2 \\ &\{x^{\#} = [2, 2]\}_1 \quad \{x^{\#} = [2, 2] \sqcup [2, 4] = [2, 4]\}_2 \\ &\} \end{aligned}
```

```
 \begin{aligned} &\{x^{\#} = \emptyset\} \\ &\mathbf{x} := \mathbf{0} \\ &\{x^{\#} = [0, 0]\} \\ &\mathbf{while} \ (\mathbf{x} < \mathbf{100}) \ \{ \\ &\{x^{\#} = [0, 0]\}_1 \\ &\mathbf{x} := \mathbf{x} + 2 \\ &\{x^{\#} = [2, 2]\}_1 \end{aligned} \qquad \{x^{\#} = [0, 2] \sqcup [2, 4] = [0, 4]\}_3
```

```
 \begin{aligned} &\{x^{\#} = \emptyset\} \\ &\mathbf{x} := \mathbf{0} \\ &\{x^{\#} = [0,0]\} \\ & \text{while } (\mathbf{x} < \mathbf{100}) \ \{ \\ &\{x^{\#} = [0,0]\}_1 \\ &\mathbf{x} := \mathbf{x} + 2 \\ &\{x^{\#} = [2,2]\}_1 \end{aligned} \quad \{\cdots\}_4, \{\cdots\}_5, \cdots \}_{\mathbf{0}}
```

```
 \begin{aligned} &\{x^{\#} = \emptyset\} \\ &\mathbf{x} := \mathbf{0} \\ &\{x^{\#} = [0, 0]\} \\ &\mathbf{while} \ (\mathbf{x} < \mathbf{100}) \ \{ \\ &\{x^{\#} = [0, 0]\}_1 \\ &\mathbf{x} := \mathbf{x} + 2 \\ &\{x^{\#} = [2, 2]\}_1 \end{aligned} \qquad \{x^{\#} = [0, 96] \sqcup [2, 98] = [0, 98]\}_{50} \\ &\mathbf{x} := \mathbf{x} + 2 \\ &\{x^{\#} = [2, 2]\}_1 \end{aligned}
```

```
\{x^{\#} = \emptyset\}
x := 0
\{x^{\#} = [0,0]\}
while (x < 100) {
   \{x^{\#} = [0,0]\}_1 \{x^{\#} = [0,96] \sqcup [2,98] = [0,98]\}_{50}
   x := x + 2
   \{x^{\#} = [2, 2]\}_1 \{x^{\#} = [2, 98] \sqcup [2, 100] = [2, 100]\}_{50}
\{x^{\#} = [100, 100]\}
```

50 iterations to reach fixedpoint (i.e., none of the abstract states changes).

```
 \begin{aligned} &\{x^{\#} = \emptyset\} \\ &\mathbf{x} := \mathbf{0} \\ &\{x^{\#} = [0, 0]\} \\ &\mathbf{while} \ (\mathbf{x} < \mathbf{100}) \ \{ \\ &\{x^{\#} = [0, 0]\}_1 \\ &\mathbf{x} := \mathbf{x} + 2 \\ &\{x^{\#} = [2, 2]\}_1 \end{aligned} \qquad \{x^{\#} = [0, 96] \sqcup [2, 98] = [0, 98]\}_{50} \\ &\mathbf{x} := \mathbf{x} + 2 \\ &\{x^{\#} = [2, 2]\}_1 \end{aligned} \qquad \{x^{\#} = [2, 98] \sqcup [2, 100] = [2, 100]\}_{50}
```

50 iterations to reach fixedpoint (i.e., none of the abstract states changes).

Q: can we reach the fixedpoint faster?

Widening operator

We compute the limit of the following sequence:

$$X_0 = \perp$$
$$X_{i+1} = X_i \nabla F^{\#}(X_i)$$

where ∇ denotes the widening operator.

```
\{x^{\#} = \emptyset\}
x := \emptyset
while (x < 100) {
x := x + 2
```

```
\{x^\# = \emptyset\}
x := 0
{x^{\#} = [0, 0]}
while (x < 100) {
   x := x + 2
```

```
 \begin{aligned} &\{x^{\#} = \emptyset\} \\ &\mathbf{x} := \mathbf{0} \\ &\{x^{\#} = [0,0]\} \\ & \text{while } (\mathbf{x} < \mathbf{100}) \ \{ \\ &\{x^{\#} = [0,0]\}_1 \quad \{x^{\#} = [0,0] \nabla [2,2] = [0,+\infty]\}_2 \\ &\mathbf{x} := \mathbf{x} + 2 \\ &\{x^{\#} = [2,2]\}_1 \quad \{x^{\#} = [2,+\infty]\}_2 \\ &\} \end{aligned}
```

```
 \begin{aligned} &\{x^{\#} = \emptyset\} \\ &\mathbf{x} \ := \ \mathbf{0} \\ &\{x^{\#} = [0,0]\} \\ & \text{while } (\mathbf{x} < \mathbf{100}) \ \{ \\ &\{x^{\#} = [0,0]\}_1 \\ &\mathbf{x} \ := \ \mathbf{x} + 2 \\ &\{x^{\#} = [2,2]\}_1 \end{aligned} \qquad \{x^{\#} = [2,+\infty]\}_3
```

3 iterations to reach fixedpoint (i.e., none of the abstract states changes).

Narrowing operator

We compute the limit of the following sequence:

$$X_0 = \perp$$
$$X_{i+1} = X_i \triangle F^{\#}(X_i)$$

where \triangle denotes the narrowing operator.

```
\{x^\# = \emptyset\}
x := 0
\{x^{\#} = [0,0]\}
while (x < 100) {
   \{x^{\#} = [0, +\infty]\} \{x^{\#} = [0, +\infty] \triangle [0, 99] = [0, 99]\}_1
   x := x + 2
   \{x^{\#} = [2, +\infty]\} \{x^{\#} = [2, 101]\}_1
\{x^{\#} = [100, 101]\}
```

```
\{x^\# = \emptyset\}
x := 0
{x^{\#} = [0, 0]}
while (x < 100) {
   \{x^{\#} = [0, +\infty]\} \{x^{\#} = [2, 101] \triangle [0, 99] = [0, 99]\}_{2}
   x := x + 2
   \{x^{\#} = [2, +\infty]\} \{x^{\#} = [2, 101]\}_2
\{x^{\#} = [100, 101]\}
```

```
 \begin{aligned} &\{x^{\#} = \emptyset\} \\ &\mathbf{x} := \mathbf{0} \\ &\{x^{\#} = [0, 0]\} \\ &\mathbf{while} \ (\mathbf{x} < \mathbf{100}) \ \{ \\ &\{x^{\#} = [0, +\infty]\} \\ &\mathbf{x} := \mathbf{x} + 2 \\ &\{x^{\#} = [2, +\infty]\} \end{aligned} \qquad \begin{aligned} &\{x^{\#} = [2, 101] \triangle [0, 99] = [0, 99]\}_2 \\ &\mathbf{x} := \mathbf{x} + 2 \\ &\{x^{\#} = [2, +\infty]\} \end{aligned} \qquad \{x^{\#} = [2, 101]\}_2 \\ &\} \\ &\{x^{\#} = [100, 101]\} \end{aligned}
```

2 iterations to reach fixedpoint (i.e., none of the abstract states changes).

 \langle End \rangle