
CS 453/698: Software and Systems Security

Meng Xu (University of Waterloo)

Module: Bug Finding Tools and Practices
Lecture: Static analysis

Spring 2025



Decl Intro Fixedpoint

Outline

1 Declarative programming

2 Introduction to abstraction interpretation

3 Reaching fixedpoint: joining, widening, and narrowing

2 / 33



Decl Intro Fixedpoint

Why this topic?

A significant portion of software security research is based on the
following observation:

If the program contains some specific code pattern, that program
is more likely to be vulnerable.

- e.g., malloc with strlen as size
- e.g., strcpy taking a user-supplied src argument

Q: How do you precisely define and express this code pattern?

A: Declarative programming, e.g., Datalog and CodeQL, is an option

3 / 33



Decl Intro Fixedpoint

Why this topic?

A significant portion of software security research is based on the
following observation:

If the program contains some specific code pattern, that program
is more likely to be vulnerable.

- e.g., malloc with strlen as size
- e.g., strcpy taking a user-supplied src argument

Q: How do you precisely define and express this code pattern?

A: Declarative programming, e.g., Datalog and CodeQL, is an option

3 / 33



Decl Intro Fixedpoint

Why this topic?

A significant portion of software security research is based on the
following observation:

If the program contains some specific code pattern, that program
is more likely to be vulnerable.

- e.g., malloc with strlen as size
- e.g., strcpy taking a user-supplied src argument

Q: How do you precisely define and express this code pattern?

A: Declarative programming, e.g., Datalog and CodeQL, is an option

3 / 33



Decl Intro Fixedpoint

Programming paradigm: imperative vs declarative

Declarative programming is a paradigm describing WHAT the
program knows and does, without explicitly specifying its algorithm.

Imperative programming is a paradigm describing HOW the
program should do something by explicitly specifying each
instruction (or state transition) step by step.

4 / 33



Decl Intro Fixedpoint

Programming paradigm: imperative vs declarative

Declarative programming is a paradigm describing WHAT the
program knows and does, without explicitly specifying its algorithm.

Imperative programming is a paradigm describing HOW the
program should do something by explicitly specifying each
instruction (or state transition) step by step.

4 / 33



Decl Intro Fixedpoint

Baking a chocolate cake

The imperative way

1 mix flour, sugar, cocoa powder,
baking soda, and salt

2 add milk, vegetable oil, eggs,
and vanilla to form the batter

3 preheat the oven at 180°C
4 put the batter in a cake pan

and bake for 30 minutes

The declarative way

cake = batter + 180°C oven +
30 minutes backing

batter = solid ingredients +
liquid ingredients

solid ingredients = flour, sugar,
cocoa powder, baking soda,
and salt

fluid ingredients = milk,
vegetable oil, eggs, and vanilla

5 / 33



Decl Intro Fixedpoint

Finding a vulnerability

The imperative way

1 for each function in the
program, search for a strcpy
call in the function body

2 trace back how the src
argument in the strcpy call is
derived (via def-use analysis)

3 for any ancestor in the trace, if
it comes from untrusted
user-controlled input, mark the
strcpy call as vulnerable

The declarative way

program = [function]

function = [instruction] (per
each function)

defines(var, instruction)

uses(instruction, var)

is user controlled(var)

is strcpy vuln =
strcpy(..., src)

+ defines(src, i src)
+ uses(i src, x)
+ defines(x, i x)
+ uses(i x, var)
+ is user controlled(var)

6 / 33



Decl Intro Fixedpoint

A new trend: declarative vulnerability finding

Recent years have observed a new trend in applying declarative-alike
tooling in finding security vulnerabilities.

The (arguably) most promininent example is CodeQL, a commercial
tool developed by Semmle, which was acquired by GitHub in 2019.

Other use cases include:

Gigahorse

Vandle

Securify 2.0

7 / 33

https://codeql.github.com/
https://github.com/nevillegrech/gigahorse-toolchain/tree/master/logic
https://github.com/usyd-blockchain/vandal/tree/master/datalog
https://github.com/eth-sri/securify2/tree/master/securify/staticanalysis/souffle_analysis


Decl Intro Fixedpoint

A new trend: declarative vulnerability finding

Recent years have observed a new trend in applying declarative-alike
tooling in finding security vulnerabilities.

The (arguably) most promininent example is CodeQL, a commercial
tool developed by Semmle, which was acquired by GitHub in 2019.

Other use cases include:

Gigahorse

Vandle

Securify 2.0

7 / 33

https://codeql.github.com/
https://github.com/nevillegrech/gigahorse-toolchain/tree/master/logic
https://github.com/usyd-blockchain/vandal/tree/master/datalog
https://github.com/eth-sri/securify2/tree/master/securify/staticanalysis/souffle_analysis


Decl Intro Fixedpoint

A new trend: declarative vulnerability finding

Recent years have observed a new trend in applying declarative-alike
tooling in finding security vulnerabilities.

The (arguably) most promininent example is CodeQL, a commercial
tool developed by Semmle, which was acquired by GitHub in 2019.

Other use cases include:

Gigahorse

Vandle

Securify 2.0

7 / 33

https://codeql.github.com/
https://github.com/nevillegrech/gigahorse-toolchain/tree/master/logic
https://github.com/usyd-blockchain/vandal/tree/master/datalog
https://github.com/eth-sri/securify2/tree/master/securify/staticanalysis/souffle_analysis


Decl Intro Fixedpoint

CodeQL example

1 import cpp
2 import semmle.code.cpp.controlflow.SSA
3

4 class MallocCall extends FunctionCall
5 {
6 MallocCall() { this.getTarget().hasGlobalName("malloc") }
7

8 Expr getAllocatedSize() {
9 if this.getArgument(0) instanceof VariableAccess then

10 exists(LocalScopeVariable v, SsaDefinition ssaDef |
11 result = ssaDef.getAnUltimateDefiningValue(v)
12 and this.getArgument(0) = ssaDef.getAUse(v))
13 else
14 result = this.getArgument(0)
15 }
16 }
17

18 from MallocCall malloc
19 where malloc.getAllocatedSize() instanceof StrlenCall
20 select malloc, "This allocation does not include space to null-terminate."

8 / 33



Decl Intro Fixedpoint

Other areas of program analysis

Declarative programming, especially Datalog, has also been widely
used in other program analysis areas, including

DOOP points-to analysis (for Java)

cclyzer++ points-to analysis (for LLVM)

DDisasm disassembler

9 / 33

https://bitbucket.org/yanniss/doop/src/master/souffle-logic/
https://github.com/GaloisInc/cclyzerpp/tree/main/datalog/points-to
https://github.com/GrammaTech/ddisasm/tree/main/src/datalog


Decl Intro Fixedpoint

Reasons to use declarative programming for static analysis

Precise definition of bug patterns can be beneficial:

- e.g., compare with another code pattern
- e.g., inter-op / composite with code patterns
- e.g., scale to more codebases
- e.g., argue for soundness / completeness

10 / 33



Decl Intro Fixedpoint

Outline

1 Declarative programming

2 Introduction to abstraction interpretation

3 Reaching fixedpoint: joining, widening, and narrowing

11 / 33



Decl Intro Fixedpoint

Why this topic?

A significant portion of software security research is related to
program analysis:

derive properties which hold for program P (i.e., inference)

prove that some property holds for program P (i.e., verification)

given a program P , generate a program P ′ which is

- in most ways equivalent to P
- behaves better than P w.r.t some criteria

(i.e., transformation)

Abstract interpretation provides a formal framework for developing
program analysis tools.

12 / 33



Decl Intro Fixedpoint

Why this topic?

A significant portion of software security research is related to
program analysis:

derive properties which hold for program P (i.e., inference)

prove that some property holds for program P (i.e., verification)

given a program P , generate a program P ′ which is

- in most ways equivalent to P
- behaves better than P w.r.t some criteria

(i.e., transformation)

Abstract interpretation provides a formal framework for developing
program analysis tools.

12 / 33



Decl Intro Fixedpoint

What is abstract interpretation?

Consider detecting that one branch will not be taken in:
int x, y, z; y := read(file); x := y ∗ y;
if x ≥ 0 then z := 1 else z := 0

Exhaustive analysis in the standard domain: non-termination

Human reasoning about programs – uses abstractions:
signs, order of magnitude, odd/even, ...

Basic idea: use approximate (generally finite) representations of
computational objects to make the problem of program dataflow
analysis tractable.

13 / 33



Decl Intro Fixedpoint

What is abstract interpretation?

Consider detecting that one branch will not be taken in:
int x, y, z; y := read(file); x := y ∗ y;
if x ≥ 0 then z := 1 else z := 0

Exhaustive analysis in the standard domain: non-termination

Human reasoning about programs – uses abstractions:
signs, order of magnitude, odd/even, ...

Basic idea: use approximate (generally finite) representations of
computational objects to make the problem of program dataflow
analysis tractable.

13 / 33



Decl Intro Fixedpoint

What is abstract interpretation?

Consider detecting that one branch will not be taken in:
int x, y, z; y := read(file); x := y ∗ y;
if x ≥ 0 then z := 1 else z := 0

Exhaustive analysis in the standard domain: non-termination

Human reasoning about programs – uses abstractions:
signs, order of magnitude, odd/even, ...

Basic idea: use approximate (generally finite) representations of
computational objects to make the problem of program dataflow
analysis tractable.

13 / 33



Decl Intro Fixedpoint

What is abstract interpretation?

Abstract interpretation is a formalization of the above procedure:

define a non-standard semantics which can approximate the
meaning (or behaviour) of the program in a finite way

expressions are computed over an approximate (abstract) domain
rather than the concrete domain (i.e., meaning of operators has
to be reconsidered w.r.t. this new domain)

14 / 33



Decl Intro Fixedpoint

Example: integer sign arithmetic

Consider the domain D = Z (integers)
and the multiplication operator: ∗ : Z2 → Z

We define an “abstract domain:” Dα = {[−], [+]}
and abstract multiplication: ∗α : D2

α → Dα defined by:

∗α [−] [+]

[−] [+] [−]
[+] [−] [+]

This allows us to conclude, for example, that y = x2 = x ∗ x is
never negative.

15 / 33



Decl Intro Fixedpoint

Example: integer sign arithmetic

Consider the domain D = Z (integers)
and the multiplication operator: ∗ : Z2 → Z

We define an “abstract domain:” Dα = {[−], [+]}
and abstract multiplication: ∗α : D2

α → Dα defined by:

∗α [−] [+]

[−] [+] [−]
[+] [−] [+]

This allows us to conclude, for example, that y = x2 = x ∗ x is
never negative.

15 / 33



Decl Intro Fixedpoint

Some observations

The basis is that whenever we have z = x ∗ y then:
if x, y ∈ Z are approximated by xα, yα ∈ Dα

then z ∈ Z is approximated by zα = xα ∗α yα
- Essentially, we map from an unbounded domain to a finite domain.

It is important to formalize this notion of approximation,
in order to be able to reason/prove that the analysis is correct.

Approximate computation is generally less precise but faster
(hence the tradeoff).

16 / 33



Decl Intro Fixedpoint

Example: integer sign arithmetic (refined)

Again, D = Z (integers)
and: ∗ : Z2 → Z

We can define a more refined “abstract domain”
D′

α = {[−], [0], [+]}

and the corresponding abstract multiplication: ∗α : D′2
α → D′

α

∗α [−] [0] [+]

[−] [+] [0] [−]
[0] [0] [0] [0]
[+] [−] [0] [+]

This allows us to conclude, for example, that z = y ∗ (0 ∗ x) is zero.

17 / 33



Decl Intro Fixedpoint

Example: integer sign arithmetic (refined)

Again, D = Z (integers)
and: ∗ : Z2 → Z

We can define a more refined “abstract domain”
D′

α = {[−], [0], [+]}

and the corresponding abstract multiplication: ∗α : D′2
α → D′

α

∗α [−] [0] [+]

[−] [+] [0] [−]
[0] [0] [0] [0]
[+] [−] [0] [+]

This allows us to conclude, for example, that z = y ∗ (0 ∗ x) is zero.

17 / 33



Decl Intro Fixedpoint

More observations

There is a degree of freedom in defining different abstract
operators and domains.

The minimal requirement is that they be “safe” or “correct”.

Different “safe” definitions result in different kinds of analysis.

18 / 33



Decl Intro Fixedpoint

Example: integer sign arithmetic (with addition)

Again, D = Z (integers)
and now we want to define the addition operator + : Z2 → Z

We cannot use D′
α = {[−], [0], [+]} because we wouldn’t know how

to represent the result of [+] +α [−], (i.e., the abstract addition
would not be closed).

Solution: introduce a new element “⊤” in the abstract domain as
an approximation of any integer.

19 / 33



Decl Intro Fixedpoint

Example: integer sign arithmetic (with addition)

Again, D = Z (integers)
and now we want to define the addition operator + : Z2 → Z

We cannot use D′
α = {[−], [0], [+]} because we wouldn’t know how

to represent the result of [+] +α [−], (i.e., the abstract addition
would not be closed).

Solution: introduce a new element “⊤” in the abstract domain as
an approximation of any integer.

19 / 33



Decl Intro Fixedpoint

Example: integer sign arithmetic (with addition)

Again, D = Z (integers)
and now we want to define the addition operator + : Z2 → Z

We cannot use D′
α = {[−], [0], [+]} because we wouldn’t know how

to represent the result of [+] +α [−], (i.e., the abstract addition
would not be closed).

Solution: introduce a new element “⊤” in the abstract domain as
an approximation of any integer.

19 / 33



Decl Intro Fixedpoint

Example: integer sign arithmetic (with addition)

New “abstract domain”: D′
α = {[−], [0], [+],⊤}

Abstract +α : D′2
α → D′

α

+α [−] [0] [+] ⊤
[−] [−] [−] ⊤ ⊤
[0] [−] [0] [+] ⊤
[+] ⊤ [+] [+] ⊤
⊤ ⊤ ⊤ ⊤ ⊤

Abstract ∗α : D′2
α → D′

α

∗α [−] [0] [+] ⊤
[−] [+] [0] [−] ⊤
[0] [0] [0] [0] [0]
[+] [−] [0] [+] ⊤
⊤ ⊤ [0] ⊤ ⊤

We can now reason that z = x2 + y2 is never negative

20 / 33



Decl Intro Fixedpoint

Example: integer sign arithmetic (with addition)

New “abstract domain”: D′
α = {[−], [0], [+],⊤}

Abstract +α : D′2
α → D′

α

+α [−] [0] [+] ⊤
[−] [−] [−] ⊤ ⊤
[0] [−] [0] [+] ⊤
[+] ⊤ [+] [+] ⊤
⊤ ⊤ ⊤ ⊤ ⊤

Abstract ∗α : D′2
α → D′

α

∗α [−] [0] [+] ⊤
[−] [+] [0] [−] ⊤
[0] [0] [0] [0] [0]
[+] [−] [0] [+] ⊤
⊤ ⊤ [0] ⊤ ⊤

We can now reason that z = x2 + y2 is never negative

20 / 33



Decl Intro Fixedpoint

More observations

In addition to the imprecision due to the coarseness of Dα, the
abstract versions of the operations (dependent on Dα) may
introduce further imprecision

Thus, the choice of abstract domain and the definition of the
abstract operators are crucial.

21 / 33



Decl Intro Fixedpoint

Concerns in abstract interpretation

Required:

- Correctness – safe approximations: the analysis should be
“conservative” and errs on the “safe side”

- Termination – compilation should definitely terminate

(note: not always the case in everyday program analysis tools!)

Desirable – “practicality”:

- Efficiency – in practice finite analysis time is not enough: finite and
small is the requirement.

- Accuracy – too many false alarms is harmful to the adoption of the
analysis tool (“the boy who cried wolf”).

- Usefulness – determines which information is worth collecting.

22 / 33



Decl Intro Fixedpoint

Outline

1 Declarative programming

2 Introduction to abstraction interpretation

3 Reaching fixedpoint: joining, widening, and narrowing

23 / 33



Decl Intro Fixedpoint

Abstract domain example: intervals

Consider the following abstract domain for x ∈ Z (integers):
x = [a, b] where

- a can be either a constant or −∞ and

- b can be either a constant or ∞.

Example:

{x# = [0, 3], y# = [0, 2]}
z = 2 * x + 4 * y

{z# = 2×# [0, 3] +# 4×# [0, 2] = [0, 14]}

Q: Why z# is an abstraction of z?

24 / 33



Decl Intro Fixedpoint

Abstract domain example: intervals

Consider the following abstract domain for x ∈ Z (integers):
x = [a, b] where

- a can be either a constant or −∞ and

- b can be either a constant or ∞.

Example:

{x# = [0, 3], y# = [0, 2]}
z = 2 * x + 4 * y

{z# = 2×# [0, 3] +# 4×# [0, 2] = [0, 14]}

Q: Why z# is an abstraction of z?

24 / 33



Decl Intro Fixedpoint

Abstract domain example: intervals

Consider the following abstract domain for x ∈ Z (integers):
x = [a, b] where

- a can be either a constant or −∞ and

- b can be either a constant or ∞.

Example:

{x# = [0, 3], y# = [0, 2]}
z = 2 * x + 4 * y

{z# = 2×# [0, 3] +# 4×# [0, 2] = [0, 14]}

Q: Why z# is an abstraction of z?

24 / 33



Decl Intro Fixedpoint

Join operator

The join operator ⊔ merges two or more abstract states into one
abstract state.

25 / 33



Decl Intro Fixedpoint

Joining operator example

{x# = [0, 10]}

if (x < 0) then

{x# = ∅}

s := -1

{x# = ∅, s# = ∅}

else if (x > 0) then

{x# = [1, 10]}

s := 1

{x# = [1, 10], s# = [1, 1]}

else

{x# = [0, 0]}

s := 0

{x# = [0, 0], s# = [0, 0]}

{x# = ∅ ⊔ [1, 10] ⊔ [0, 0] = [0, 10], s# = ∅ ⊔ [1, 1] ⊔ [0, 0] = [0, 1]}

26 / 33



Decl Intro Fixedpoint

Joining operator example

{x# = [0, 10]}

if (x < 0) then

{x# = ∅}
s := -1

{x# = ∅, s# = ∅}
else if (x > 0) then

{x# = [1, 10]}

s := 1

{x# = [1, 10], s# = [1, 1]}

else

{x# = [0, 0]}

s := 0

{x# = [0, 0], s# = [0, 0]}

{x# = ∅ ⊔ [1, 10] ⊔ [0, 0] = [0, 10], s# = ∅ ⊔ [1, 1] ⊔ [0, 0] = [0, 1]}

26 / 33



Decl Intro Fixedpoint

Joining operator example

{x# = [0, 10]}

if (x < 0) then

{x# = ∅}
s := -1

{x# = ∅, s# = ∅}
else if (x > 0) then

{x# = [1, 10]}
s := 1

{x# = [1, 10], s# = [1, 1]}
else

{x# = [0, 0]}

s := 0

{x# = [0, 0], s# = [0, 0]}

{x# = ∅ ⊔ [1, 10] ⊔ [0, 0] = [0, 10], s# = ∅ ⊔ [1, 1] ⊔ [0, 0] = [0, 1]}

26 / 33



Decl Intro Fixedpoint

Joining operator example

{x# = [0, 10]}

if (x < 0) then

{x# = ∅}
s := -1

{x# = ∅, s# = ∅}
else if (x > 0) then

{x# = [1, 10]}
s := 1

{x# = [1, 10], s# = [1, 1]}
else

{x# = [0, 0]}
s := 0

{x# = [0, 0], s# = [0, 0]}

{x# = ∅ ⊔ [1, 10] ⊔ [0, 0] = [0, 10], s# = ∅ ⊔ [1, 1] ⊔ [0, 0] = [0, 1]}

26 / 33



Decl Intro Fixedpoint

Joining operator example

{x# = [0, 10]}

if (x < 0) then

{x# = ∅}
s := -1

{x# = ∅, s# = ∅}
else if (x > 0) then

{x# = [1, 10]}
s := 1

{x# = [1, 10], s# = [1, 1]}
else

{x# = [0, 0]}
s := 0

{x# = [0, 0], s# = [0, 0]}

{x# = ∅ ⊔ [1, 10] ⊔ [0, 0] = [0, 10], s# = ∅ ⊔ [1, 1] ⊔ [0, 0] = [0, 1]}
26 / 33



Decl Intro Fixedpoint

What about loops?

{x# = ∅}

x := 0

{x# = ⟨even⟩}

while (x < 100) {

{x# = ⟨even⟩}1 {x# = ⟨even⟩ ⊔ ⟨even⟩ = ⟨even⟩}2

x := x + 2

{x# = ⟨even⟩}1

}

{x# = ⟨even⟩}

Two iterations to reach fixedpoint (i.e., none of the abstract states
changes).

27 / 33



Decl Intro Fixedpoint

What about loops?

{x# = ∅}

x := 0

{x# = ⟨even⟩}
while (x < 100) {

{x# = ⟨even⟩}1 {x# = ⟨even⟩ ⊔ ⟨even⟩ = ⟨even⟩}2

x := x + 2

{x# = ⟨even⟩}1

}

{x# = ⟨even⟩}

Two iterations to reach fixedpoint (i.e., none of the abstract states
changes).

27 / 33



Decl Intro Fixedpoint

What about loops?

{x# = ∅}

x := 0

{x# = ⟨even⟩}
while (x < 100) {

{x# = ⟨even⟩}1

{x# = ⟨even⟩ ⊔ ⟨even⟩ = ⟨even⟩}2

x := x + 2

{x# = ⟨even⟩}1
}

{x# = ⟨even⟩}

Two iterations to reach fixedpoint (i.e., none of the abstract states
changes).

27 / 33



Decl Intro Fixedpoint

What about loops?

{x# = ∅}

x := 0

{x# = ⟨even⟩}
while (x < 100) {

{x# = ⟨even⟩}1 {x# = ⟨even⟩ ⊔ ⟨even⟩ = ⟨even⟩}2
x := x + 2

{x# = ⟨even⟩}1
}

{x# = ⟨even⟩}

Two iterations to reach fixedpoint (i.e., none of the abstract states
changes).

27 / 33



Decl Intro Fixedpoint

What about loops?

{x# = ∅}

x := 0

{x# = ⟨even⟩}
while (x < 100) {

{x# = ⟨even⟩}1 {x# = ⟨even⟩ ⊔ ⟨even⟩ = ⟨even⟩}2
x := x + 2

{x# = ⟨even⟩}1
}
{x# = ⟨even⟩}

Two iterations to reach fixedpoint (i.e., none of the abstract states
changes).

27 / 33



Decl Intro Fixedpoint

Collecting semantics

{x# = ∅}

x := 0

{x# = [0, 0]}

while (x < 100) {

{x# = [0, 0]}1

x := x + 2

{x# = [2, 2]}1

}

{x# = [100, 100]}

50 iterations to reach fixedpoint (i.e., none of the abstract states
changes).

Q: can we reach the fixedpoint faster?

28 / 33



Decl Intro Fixedpoint

Collecting semantics

{x# = ∅}

x := 0

{x# = [0, 0]}
while (x < 100) {

{x# = [0, 0]}1

x := x + 2

{x# = [2, 2]}1

}

{x# = [100, 100]}

50 iterations to reach fixedpoint (i.e., none of the abstract states
changes).

Q: can we reach the fixedpoint faster?

28 / 33



Decl Intro Fixedpoint

Collecting semantics

{x# = ∅}

x := 0

{x# = [0, 0]}
while (x < 100) {

{x# = [0, 0]}1
x := x + 2

{x# = [2, 2]}1
}

{x# = [100, 100]}

50 iterations to reach fixedpoint (i.e., none of the abstract states
changes).

Q: can we reach the fixedpoint faster?

28 / 33



Decl Intro Fixedpoint

Collecting semantics

{x# = ∅}

x := 0

{x# = [0, 0]}
while (x < 100) {

{x# = [0, 0]}1 {x# = [0, 0] ⊔ [2, 2] = [0, 2]}2
x := x + 2

{x# = [2, 2]}1 {x# = [2, 2] ⊔ [2, 4] = [2, 4]}2
}

{x# = [100, 100]}

50 iterations to reach fixedpoint (i.e., none of the abstract states
changes).

Q: can we reach the fixedpoint faster?

28 / 33



Decl Intro Fixedpoint

Collecting semantics

{x# = ∅}

x := 0

{x# = [0, 0]}
while (x < 100) {

{x# = [0, 0]}1 {x# = [0, 2] ⊔ [2, 4] = [0, 4]}3
x := x + 2

{x# = [2, 2]}1 {x# = [2, 4] ⊔ [2, 6] = [2, 6]}3
}

{x# = [100, 100]}

50 iterations to reach fixedpoint (i.e., none of the abstract states
changes).

Q: can we reach the fixedpoint faster?

28 / 33



Decl Intro Fixedpoint

Collecting semantics

{x# = ∅}

x := 0

{x# = [0, 0]}
while (x < 100) {

{x# = [0, 0]}1 {· · · }4, {· · · }5, · · ·
x := x + 2

{x# = [2, 2]}1 {· · · }4, {· · · }5, · · ·
}

{x# = [100, 100]}

50 iterations to reach fixedpoint (i.e., none of the abstract states
changes).

Q: can we reach the fixedpoint faster?

28 / 33



Decl Intro Fixedpoint

Collecting semantics

{x# = ∅}

x := 0

{x# = [0, 0]}
while (x < 100) {

{x# = [0, 0]}1 {x# = [0, 96] ⊔ [2, 98] = [0, 98]}50
x := x + 2

{x# = [2, 2]}1 {x# = [2, 98] ⊔ [2, 100] = [2, 100]}50
}

{x# = [100, 100]}

50 iterations to reach fixedpoint (i.e., none of the abstract states
changes).

Q: can we reach the fixedpoint faster?

28 / 33



Decl Intro Fixedpoint

Collecting semantics

{x# = ∅}

x := 0

{x# = [0, 0]}
while (x < 100) {

{x# = [0, 0]}1 {x# = [0, 96] ⊔ [2, 98] = [0, 98]}50
x := x + 2

{x# = [2, 2]}1 {x# = [2, 98] ⊔ [2, 100] = [2, 100]}50
}
{x# = [100, 100]}

50 iterations to reach fixedpoint (i.e., none of the abstract states
changes).

Q: can we reach the fixedpoint faster?

28 / 33



Decl Intro Fixedpoint

Collecting semantics

{x# = ∅}

x := 0

{x# = [0, 0]}
while (x < 100) {

{x# = [0, 0]}1 {x# = [0, 96] ⊔ [2, 98] = [0, 98]}50
x := x + 2

{x# = [2, 2]}1 {x# = [2, 98] ⊔ [2, 100] = [2, 100]}50
}
{x# = [100, 100]}

50 iterations to reach fixedpoint (i.e., none of the abstract states
changes).

Q: can we reach the fixedpoint faster?
28 / 33



Decl Intro Fixedpoint

Widening operator

We compute the limit of the following sequence:

X0 =⊥

Xi+1 = Xi▽F
#(Xi)

where ▽ denotes the widening operator.

29 / 33



Decl Intro Fixedpoint

Widening operator example

{x# = ∅}

x := 0

{x# = [0, 0]}

while (x < 100) {

{x# = [0, 0]}1

x := x + 2

{x# = [2, 2]}1

}

{x# = [100,+∞]}

3 iterations to reach fixedpoint (i.e., none of the abstract states
changes).

30 / 33



Decl Intro Fixedpoint

Widening operator example

{x# = ∅}

x := 0

{x# = [0, 0]}
while (x < 100) {

{x# = [0, 0]}1

x := x + 2

{x# = [2, 2]}1

}

{x# = [100,+∞]}

3 iterations to reach fixedpoint (i.e., none of the abstract states
changes).

30 / 33



Decl Intro Fixedpoint

Widening operator example

{x# = ∅}

x := 0

{x# = [0, 0]}
while (x < 100) {

{x# = [0, 0]}1
x := x + 2

{x# = [2, 2]}1
}

{x# = [100,+∞]}

3 iterations to reach fixedpoint (i.e., none of the abstract states
changes).

30 / 33



Decl Intro Fixedpoint

Widening operator example

{x# = ∅}

x := 0

{x# = [0, 0]}
while (x < 100) {

{x# = [0, 0]}1 {x# = [0, 0]▽[2, 2] = [0,+∞]}2
x := x + 2

{x# = [2, 2]}1 {x# = [2,+∞]}2
}

{x# = [100,+∞]}

3 iterations to reach fixedpoint (i.e., none of the abstract states
changes).

30 / 33



Decl Intro Fixedpoint

Widening operator example

{x# = ∅}

x := 0

{x# = [0, 0]}
while (x < 100) {

{x# = [0, 0]}1 {x# = [0,+∞]▽[2,+∞] = [0,+∞]}3
x := x + 2

{x# = [2, 2]}1 {x# = [2,+∞]}3
}

{x# = [100,+∞]}

3 iterations to reach fixedpoint (i.e., none of the abstract states
changes).

30 / 33



Decl Intro Fixedpoint

Widening operator example

{x# = ∅}

x := 0

{x# = [0, 0]}
while (x < 100) {

{x# = [0, 0]}1 {x# = [0,+∞]▽[2,+∞] = [0,+∞]}3
x := x + 2

{x# = [2, 2]}1 {x# = [2,+∞]}3
}
{x# = [100,+∞]}

3 iterations to reach fixedpoint (i.e., none of the abstract states
changes).

30 / 33



Decl Intro Fixedpoint

Narrowing operator

We compute the limit of the following sequence:

X0 =⊥

Xi+1 = Xi△F#(Xi)

where △ denotes the narrowing operator.

31 / 33



Decl Intro Fixedpoint

Narrowing operator example

{x# = ∅}

x := 0

{x# = [0, 0]}
while (x < 100) {

{x# = [0,+∞]}
x := x + 2

{x# = [2,+∞]}
}
{x# = [100, 101]}

2 iterations to reach fixedpoint (i.e., none of the abstract states
changes).

32 / 33



Decl Intro Fixedpoint

Narrowing operator example

{x# = ∅}

x := 0

{x# = [0, 0]}
while (x < 100) {

{x# = [0,+∞]} {x# = [0,+∞]△[0, 99] = [0, 99]}1
x := x + 2

{x# = [2,+∞]} {x# = [2, 101]}1
}
{x# = [100, 101]}

2 iterations to reach fixedpoint (i.e., none of the abstract states
changes).

32 / 33



Decl Intro Fixedpoint

Narrowing operator example

{x# = ∅}

x := 0

{x# = [0, 0]}
while (x < 100) {

{x# = [0,+∞]} {x# = [2, 101]△[0, 99] = [0, 99]}2
x := x + 2

{x# = [2,+∞]} {x# = [2, 101]}2
}
{x# = [100, 101]}

2 iterations to reach fixedpoint (i.e., none of the abstract states
changes).

32 / 33



Decl Intro Fixedpoint

Narrowing operator example

{x# = ∅}

x := 0

{x# = [0, 0]}
while (x < 100) {

{x# = [0,+∞]} {x# = [2, 101]△[0, 99] = [0, 99]}2
x := x + 2

{x# = [2,+∞]} {x# = [2, 101]}2
}
{x# = [100, 101]}

2 iterations to reach fixedpoint (i.e., none of the abstract states
changes).

32 / 33



Decl Intro Fixedpoint

⟨ End ⟩

33 / 33


	Declarative programming
	Introduction to abstraction interpretation
	Reaching fixedpoint: joining, widening, and narrowing

