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Why this topic?

A significant portion of software security research is based on the
following observation:

If the program contains some specific code pattern, that program
is more likely to be vulnerable.

- e.g., malloc with strlen as size
- e.g., strcpy taking a user-supplied src argument
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A significant portion of software security research is based on the
following observation:

If the program contains some specific code pattern, that program
is more likely to be vulnerable.

- e.g., malloc with strlen as size
- e.g., strcpy taking a user-supplied src argument

Q: How do you precisely define and express this code pattern? J

A: Declarative programming, e.g., Datalog and CodeQL, is an optionJ
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Programming paradigm: imperative vs declarative
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Programming paradigm: imperative vs declarative

Declarative programming is a paradigm describing WHAT the
program knows and does, without explicitly specifying its algorithm.

Imperative programming is a paradigm describing HOW the
program should do something by explicitly specifying each
instruction (or state transition) step by step.
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Baking a chocolate cake

The imperative way

@ mix flour, sugar, cocoa powder,
baking soda, and salt

@ add milk, vegetable oil, eggs,
and vanilla to form the batter

© preheat the oven at 180°C

@ put the batter in a cake pan
and bake for 30 minutes

The declarative way

@ cake = batter + 180°C oven +
30 minutes backing

@ batter = solid ingredients +
liquid ingredients

@ solid ingredients = flour, sugar,
cocoa powder, baking soda,
and salt

o fluid ingredients = milk,
vegetable oil, eggs, and vanilla
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Finding a vulnerability

The imperative way

@ for each function in the
program, search for a strcpy
call in the function body

@ trace back how the src
argument in the strcpy call is
derived (via def-use analysis)

© for any ancestor in the trace, if
it comes from untrusted
user-controlled input, mark the
strcpy call as vulnerable

The declarative way

@ program = [function]

function = [instruction] (per
each function)

defines(var, instruction)
uses(instruction, var)

is_user_controlled(var)

is_strcpy_vuln =
strcpy(..., src)

+ defines(src, i_src)

+ uses(i_src, x)

+ defines(x, ix)

+ uses(i_x, var)

+ is_user_controlled(var)
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A new trend: declarative vulnerability finding

Recent years have observed a new trend in applying declarative-alike
tooling in finding security vulnerabilities.
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A new trend: declarative vulnerability finding

Recent years have observed a new trend in applying declarative-alike
tooling in finding security vulnerabilities.

The (arguably) most promininent example is CodeQL, a commercial
tool developed by Semmle, which was acquired by GitHub in 2019.

Other use cases include:
o Gigahorse

@ Vandle

@ Securify 2.0
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CodeQL example
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import cpp
import semmle.code.cpp.controlflow.SSA

class MallocCall extends FunctionCall

{
MallocCall() { this.getTarget().hasGlobalName('"malloc") }
Expr getAllocatedSize() {
if this.getArgument(0) instanceof VariableAccess then
exists(LocalScopeVariable v, SsaDefinition ssaDef |
result = ssaDef.getAnUltimateDefiningValue(v)
and this.getArgument(0) = ssaDef.getAUse(v))
else
result = this.getArgument(0)
}
}

from MallocCall malloc
where malloc.getAllocatedSize() instanceof StrlenCall
select malloc, "This allocation does not include space to null-terminate."

8/33



Decl
000000080

Other areas of program analysis

Declarative programming, especially Datalog, has also been widely
used in other program analysis areas, including

@ DOOP points-to analysis (for Java)
@ cclyzer++ points-to analysis (for LLVM)

@ DDisasm disassembler
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Reasons to use declarative programming for static analysis

Precise definition of bug patterns can be beneficial:

- e.g., compare with another code pattern

- e.g., inter-op / composite with code patterns
- e.g., scale to more codebases

- e.g., argue for soundness / completeness
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Outline

© Introduction to abstraction interpretation
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Why this topic?

A significant portion of software security research is related to
program analysis:

e derive properties which hold for program P (i.e., inference)

@ prove that some property holds for program P (i.e., verification)
@ given a program P, generate a program P’ which is

- in most ways equivalent to P
- behaves better than P w.r.t some criteria

(i.e., transformation)
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Why this topic?

A significant portion of software security research is related to
program analysis:

e derive properties which hold for program P (i.e., inference)

@ prove that some property holds for program P (i.e., verification)
@ given a program P, generate a program P’ which is

- in most ways equivalent to P
- behaves better than P w.r.t some criteria

(i.e., transformation)

Abstract interpretation provides a formal framework for developing
program analysis tools.
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int x,y,z; y:=read(file); x:=yxuy;
ifx > Othenz:=1else z:=0
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@ Human reasoning about programs — uses abstractions:
signs, order of magnitude, odd/even, ...

13/33



Intro
00@000000000

What is abstract interpretation?

Consider detecting that one branch will not be taken in:
int x,y,z; y:=read(file); x:=yxuy;
ifx > Othenz:=1else z:=0

@ Exhaustive analysis in the standard domain: non-termination

@ Human reasoning about programs — uses abstractions:
signs, order of magnitude, odd/even, ...

Basic idea: use approximate (generally finite) representations of
computational objects to make the problem of program dataflow
analysis tractable.
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What is abstract interpretation?

Abstract interpretation is a formalization of the above procedure:

@ define a non-standard semantics which can approximate the
meaning (or behaviour) of the program in a finite way

@ expressions are computed over an approximate (abstract) domain
rather than the concrete domain (i.e., meaning of operators has
to be reconsidered w.r.t. this new domain)
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Example: integer sign arithmetic

Consider the domain D = Z (integers)
and the multiplication operator: * : Z2 — Z

We define an "abstract domain:" D, = {[—], [+]}
and abstract multiplication: *, : D2 — D, defined by:

[+]
(-]
[+

*a | -]
=1 ] [+
[+ | ]
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Example: integer sign arithmetic

Consider the domain D = Z (integers)
and the multiplication operator: * : Z2 — Z

We define an "abstract domain:" D, = {[—], [+]}
and abstract multiplication: *, : D2 — D, defined by:

*o | [=] | [4]
=1 [+ ][]
=

2

This allows us to conclude, for example, that y = z* = x *xz is

never negative.
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Some observations

@ The basis is that whenever we have z = x * y then:

if x,y € Z are approximated by s, yo € Dq
then z € Z is approximated by z, = x4 *q Yo

- Essentially, we map from an unbounded domain to a finite domain.

@ It is important to formalize this notion of approximation,
in order to be able to reason/prove that the analysis is correct.

@ Approximate computation is generally less precise but faster
(hence the tradeoff).
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Example: integer sign arithmetic (refined)

Again, D = Z (integers)
and: x: 22 - 7

We can define a more refined “abstract domain”

De, = {[=], (0], [+]}

and the corresponding abstract multiplication: q : D'2 — D/,

o | [=] | [0] | [4]
(=1 [+ ] o) | -]
[0 | [0] | [0] | [0]
[+ [ [0 | [+]
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Example: integer sign arithmetic (refined)

Again, D = Z (integers)
and: x: 22 - 7

We can define a more refined “abstract domain”

De, = {[=], (0], [+]}

and the corresponding abstract multiplication: q : D'2 — D/,

o | [=] | [0] | [4]
(=1 [+ ] o) | -]
[0 | [0] | [0] | [0]
[+ [ [0 | [+]

This allows us to conclude, for example, that z = y * (0 % x) is zero.
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More observations

@ There is a degree of freedom in defining different abstract
operators and domains.

@ The minimal requirement is that they be “safe” or “correct”.

o Different “safe” definitions result in different kinds of analysis.
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Example: integer sign arithmetic (with addition)

Again, D = Z (integers)
and now we want to define the addition operator + : Z?> — Z
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Example: integer sign arithmetic (with addition)

Again, D = Z (integers)
and now we want to define the addition operator + : Z?> — Z

We cannot use D;, = {[—], [0],[+]} because we wouldn’t know how

to represent the result of [+] 4+, [—], (i.e., the abstract addition
would not be closed).
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Example: integer sign arithmetic (with addition)

Again, D = Z (integers)
and now we want to define the addition operator + : Z?> — Z

We cannot use D;, = {[—], [0],[+]} because we wouldn’t know how
to represent the result of [+] 4+, [—], (i.e., the abstract addition

would not be closed).

Solution: introduce a new element “T" in the abstract domain as
an approximation of any integer.

19/33



New “abstract domain”:

Abstract -+, : D’i - D'y,

to |10 J[+H]T
S =TT
O | =1 O | [+ T
] T T
T T T T|T

Abstract *,, : D’i — D',
*a | [0 ]| T
SO =T
[0] | [0] | [0] | [0] | [0]
] = [+ T
T TI|[O] T |T
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New “abstract domain”: D', = {[-],[0],[+], T}

Abstract -+, : D’i - D'y, Abstract *,, : D’i — D',
o [[H1]O [ [H|T to |1 ]| T
1 = =TT SO =T
Of | =] [o] |[+]|T [0] | [0] | [0] | [0] | [0]
1) T T =10+ ] T
T T T T | T T T |[0] T T

We can now reason that z = 22 4+ 2 is never negative
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More observations

@ In addition to the imprecision due to the coarseness of D,, the
abstract versions of the operations (dependent on D,) may
introduce further imprecision

@ Thus, the choice of abstract domain and the definition of the
abstract operators are crucial.
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Concerns in abstract interpretation

@ Required:

- Correctness — safe approximations: the analysis should be
“conservative” and errs on the “safe side”
- Termination — compilation should definitely terminate

(note: not always the case in everyday program analysis tools!)

@ Desirable — “practicality”:
- Efficiency — in practice finite analysis time is not enough: finite and
small is the requirement.
- Accuracy — too many false alarms is harmful to the adoption of the
analysis tool (“the boy who cried wolf").
- Usefulness — determines which information is worth collecting.
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Outline

© Reaching fixedpoint: joining, widening, and narrowing
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Abstract domain example: intervals

Consider the following abstract domain for € Z (integers):
x = [a, b] where

- a can be either a constant or —oo and

- b can be either a constant or co.
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Abstract domain example: intervals

Consider the following abstract domain for € Z (integers):
x = [a, b] where
- a can be either a constant or —oo and

- b can be either a constant or co.

Example:
{ZL'# = [073]a y# = [072]}

z=2%*x+4%y
{2# =2 x#[0,3] +7 4 x7 [0,2] = [0, 14]}
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Abstract domain example: intervals

Consider the following abstract domain for € Z (integers):
x = [a, b] where
- a can be either a constant or —oo and

- b can be either a constant or co.

Example:
{ZL'# = [073]a y# = [072]}

z=2%*x+4%y
{2# =2 x#[0,3] +7 4 x7 [0,2] = [0, 14]}

Q: Why 2% is an abstraction of 2? J
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Join operator

The join operator LI merges two or more abstract states into one
abstract state.
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Joining operator example

{z# =[0,10]}
if (x < 0) then
s = -1

else if (x > 0) then

s ;=1
else
s :=0
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Joining operator example

{a# =0, 10]}
if (x < 0) then
{a# =0}
s = -1
{a# =0, s7* =0}
else if (x > 0) then
s ;=1
else
s :=0
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Joining operator example

{z# = [0,10]}
if (x < 0) then

{a# =0}

s = -1

{a# =0, s* =0}
else if (x > 0) then

{z# = [1,10]}

s =1

{x# =[1,10], s* = [1,1]}
else

s (=0
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Joining operator example

{z# = [0,10]}
if (x < 0) then

{a# =0}

s = -1

{a# =0, s* =0}
else if (x > 0) then

{z# = [1,10]}

s =1

{x# =[1,10], s* = [1,1]}
else

{z# =10,0}

s :=0

{z# =[0,0], s* = [0,0]}
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Joining operator example

{z# = [0,10]}
if (x < 0) then

{a# =0}

s = -1

{a# =0, s* =0}
else if (x > 0) then

{z# = [1,10]}

s =1

{x# =[1,10], s* = [1,1]}
else

{z# =10,0}

s :=0

{a# =10,0], s% = [0, 0]}

{x# = (U [1,10] U [0,0] = [0,10], s# = QL [1,1] LU [0,0] = [0,1]}
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What about loops?

a# =0}
x :=0
while (x < 100) {

X =X + 2
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{# =0)

x:=0
{27 = (even)}
while (x < 100) {
{27 = (even)};
X 1= X+ 2
{27 = (even) };
}

27/33



Fixedpoint
0000@000000

What about loops?

{# =0)

x:=0

{27 = (even)}

while (x < 100) {
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What about loops?

{# =0)

x:=0

{x# = (even)}

while (x < 100) {
{z# = (even)}1 {27 = (even) U (even) = (even)}s
X =X+ 2
{27 = (even) };

}

{z% = (even)}

Two iterations to reach fixedpoint (i.e., none of the abstract states
changes).
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Collecting semantics

{a# = 0}

x :=0
while (x < 100) {

X 1= X + 2
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Collecting semantics

{o# =0}
x =0
{a# =1[0,0]}

while (x < 100) {

X 1= X + 2

28/33



Fixedpoint
00000@00000

Collecting semantics

{a# = 0}

x =0
{a# = [0,0]}
while (x < 100) {
{33# = [0’0]}1
X =X + 2
{a# =[2,2]h
}
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Collecting semantics

{o# =0}
x =0
{a# =1[0,0]}

while (x < 100) {
{x# =1[0,0}1 {27 =1[0,0] LU [2,2] = [0,2]}2
X =X + 2
{.75# = [272]}1 {l# - [272] U [274] - [274]}2
}
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Collecting semantics

{o# =0}
x =0
{a# =1[0,0]}

while (x < 100) {
{33# = [0,0]}1 {iL‘# =[0,2]U[2,4] = [0,4]}s
X =X + 2
{o# =22 {27 =[2,4]U[2,6] = [2,6]}5
}
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Collecting semantics

{* =0}
x =0
{z# =10,0]}

while (x < 100) {

{z# =10,0]} IRV e

X =X+ 2
: {7 =[2,2]1 o da o Ys
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Collecting semantics

{o# =0}
x =0
{a# =1[0,0]}

while (x < 100) {
{z#=100,0}1  {2# =[0,96] L [2,98] = [0,98]}50
X =X + 2

{7 =[2,2]1 {x7 = [2,98] LI [2,100] = [2,100]}50
}
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Collecting semantics

{o# =0}
x =0
{a# =1[0,0]}

while (x < 100) {

{z# =[0,01}1 {z# =[0,96] U [2,98] = [0,98]}50

X =X + 2

{7 =[2,2]1 {x7 = [2,98] LI [2,100] = [2,100]}50
}
{z# = [100, 100]}

50 iterations to reach fixedpoint (i.e., none of the abstract states
changes).
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Collecting semantics

{o# =0}
x =0
{a# =1[0,0]}

while (x < 100) {

{z# =[0,01}1 {z# =[0,96] U [2,98] = [0,98]}50

X =X + 2

{7 =[2,2]1 {x7 = [2,98] LI [2,100] = [2,100]}50
}
{z# = [100, 100]}

50 iterations to reach fixedpoint (i.e., none of the abstract states
changes).

Q: can we reach the fixedpoint faster?
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Widening operator

We compute the limit of the following sequence:

Xo=1
Xiy1 = XZVF#(Xz)

where V denotes the widening operator.
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Widening operator example

{e# =0}
x :=0
while (x < 100) {

X =X + 2
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Widening operator example

{«# =0}
x =0
{o# = [0,0]}

while (x < 100) {

X =X + 2
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Widening operator example

{# =0)

x :=0
fa# = 0,0}
while (x < 100) {
{a# =[0,0}
X =X+ 2
{a% = [2,2]h
}
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Widening operator example

{a# =0}
x =0
{#* = 0,0}

while (x < 100) {
{z# =[0,0}1 {z¥ =10,0]V[2,2] = [0, +o0]}2
X =X + 2
{z# =102,2lh  {2# =2, +o0]}2

}
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Widening operator example

{a# =0}
x =0
{#* = 0,0}

while (x < 100) {
{z#=00,0}1 {27 =0, +00]V[2, +00] = [0, +00]}5
X =X + 2
{z# =[2,21hh  {a¥ = [2,+o0]}3

}

30/33
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Widening operator example

{«# =0}
x =0
{o# = [0,0]}

while (x < 100) {
{z# =[0,0]}4 {# = [0, +00]V[2, +00] = [0, +00]}3
X =X+ 2
{z# =[2,2l}h  {z¥ =[2,4+00]}3

}

{z# = [100, +oc]}

3 iterations to reach fixedpoint (i.e., none of the abstract states
changes).
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Narrowing operator

We compute the limit of the following sequence:

Xo=1
Xii1 = X;AF7(X;)

where A denotes the narrowing operator.

31/33



Fixedpoint
00000000080

Narrowing operator example

{# =0)

x :=0

{a# = [0,0]}

while (x < 100) {
{z# = [0, +oo]}
X =X + 2

: {2# = [2,+oo]}

{z# = [100,101]}
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Narrowing operator example

{«# =0}
x =0
{o# = [0,0]}

while (x < 100) {
{z# =[0,+0]} {27 =[0,+0c]A[0,99] = [0,99]}4
X =X+ 2
{o# = [2,400]} {o¥ =1[2,101]}

}

{z# = [100, 101]}
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Narrowing operator example

{«# =0}
x =0
{o# = [0,0]}

while (x < 100) {
{z# =[0,+c]} {27 =[2,101]A[0,99] = [0,99]}2
X =X+ 2
{z# =[2,+00]} {27 =[2,101]}>

}

{z# = [100,101]}
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Narrowing operator example

{«# =0}
x =0
{o# = [0,0]}

while (x < 100) {
{z# =[0,+c]} {27 =[2,101]A[0,99] = [0,99]}2
X =X+ 2
{z# =[2,+00]} {27 =[2,101]}>

}

{z# = [100,101]}

2 iterations to reach fixedpoint (i.e., none of the abstract states
changes).
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( End )
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