CS 453/698: Software and Systems Security

Module: Hardware & Mobile Security
Lecture: Side-channel attacks
Adam Caulfield

University of Waterloo
Spring 2025

Reminders & Recap

Reminders:

e A4isreleased
* Due July 25th

Recap - last time we covered:

ARM TrustZone

* TZASC/TZMA: partition system resources

* NS-bit: internal to CPU, used by TZ-Aware MMU + Cache
* Secure world boots first

Android

* OSthat leverages TZ

* Some features require SE

https://watssec.github.io/cs453-s25/assignments/a4/
https://watssec.github.io/cs453-s25/assignments/a4/

What is a side channel?

Definition: a mechanism by which an attacker can extract information
about a system or its operations by observing characteristics or

indirect effects that are not part of the system’s intended input or
output.

What is a side channel?

Definition: a mechanism by which an attacker can extract information
about a system or its operations by observing characteristics or
indirect effects that are not part of the system’s intended input or
output.

Metaphor: Locard’s exchange principle

In forensic science, Locard’s principle holds that: the perpetrator of a crime will
bring something into the crime scene and leave with something from it, and that
both can be used as forensic evidence > every contact leaves a trace

What is a side channel?

Definition: a mechanism by which an attacker can extract information
about a system or its operations by observing characteristics or
indirect effects that are not part of the system’s intended input or
output.

Metaphor: Locard’s exchange principle

In forensic science, Locard’s principle holds that: the perpetrator of a crime will
bring something into the crime scene and leave with something from it, and that
both can be used as forensic evidence > every contact leaves a trace

For computer security:

The execution of code will bring something to the hosting platform and leave with
something from it, and both can be used as side channels.

Side Channels

Examples of side channels
Bandwidth consumptions (e.g., network traffic)

“James Bond” attacks
* Thermal/audio footprints
* Power consumption

General timing side channels

Cache-timing channels

Side Channels: Bandwidth consumption

Alice and Bob Communicate: Pages
Alice accesses health forum via encrypted channel with Bob
Adv. knows: bob hosts web forum & its content 3 KB

But, cannot directly decrypt the downloaded content

L4

4 KB

2 KB

1.1KB 1KB 2KB
1 KB

Side Channels: Bandwidth consumption

Adv. determines size of all pages on health forum Pages
Then, measures the size of Alice’s downloaded pages
3 KB
4 KB
2 KB

1.1KB 1KB 2 KB

1 KB

Side Channels: Bandwidth consumption

Adv. determines size of all pages on health forum

Then, measures the size of Alice’s downloaded pages

Could potentially determine which webpage Alice is accessing
Potentially leaking private information

1.1KB 1KB 2 KB

Pages

3 KB

4 KB

2 KB

1 KB

Side Channels: Bandwidth consumption

Another example:
Re-identification of Netflix video streaming
Burst sizes of a streamed scene of “Reservoir dogs”

1078
1077

1075
1074 * ¥ K
1073

burst size (bytes)
.*.

1012 —

10"6 * x ¥ ¥* Tk PEEAEE. BE- * k¥

20 40 60
time (seconds)

Schster et al., USENIX Security 2017

10

https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-schuster.pdf

Side Channels: “’James Bonds” attacks

Any type of characteristic can be used as a side channel

(b) STEP 2: Victim Leaves
(Opportunistic)

(a) STEP 1: Victim Enters Password (c) STEP 3: Thermal Residues Captured

(b) STEP 2: Victim Drawn Away
(Orchestrated)

Figure 4: An Example of Thermanator Attack.

Kaczmarek et al.: Thermal Side-Channel Attacks on Keyboard Input y

https://arxiv.org/pdf/2210.02234
https://arxiv.org/pdf/2210.02234
https://arxiv.org/pdf/2210.02234
https://arxiv.org/pdf/2210.02234
https://arxiv.org/pdf/2210.02234
https://arxiv.org/pdf/2210.02234

Side Channels: “’James Bonds” attacks

Any type of characteristic can be used as a side channel

02 ;
—7—Screen Off
O—Screen On : <
WiFi Enabled
—0—Enter Lock Screen Mi clr;con:tro(iler]
0.15r —O-Tap Pin Code 1 W W
> - - N
5o
& 0.1 :
3 i
> o) O
005 o v High Frequency Analog \’
' to Digital Converter
Ist 2nd Charging Cable with :
Button Button .3Q Resistor for Voltage
0 L ' ' Measurement
1 2 3 4
Time (S)

Cronin et al.: Charger-Surfing: Exploiting a Power Line Side-Channel for Smartphone Information Leakage

12

https://www.usenix.org/system/files/sec21-cronin.pdf
https://www.usenix.org/system/files/sec21-cronin.pdf
https://www.usenix.org/system/files/sec21-cronin.pdf
https://www.usenix.org/system/files/sec21-cronin.pdf
https://www.usenix.org/system/files/sec21-cronin.pdf
https://www.usenix.org/system/files/sec21-cronin.pdf
https://www.usenix.org/system/files/sec21-cronin.pdf

Side Channels: Timing

Take this example function:
Finds the maximum value in a __secret__ buffer (int *arr)

int “find_max(__secret__ int *arr, int n) {
int max_val = INT_MINIMUM;
for (int i = 0; 1 < n; i++) {
if (arr[i] > max_val) {
max_val = arr[i];
¥
}

return max_val;

© 0 1 O Ot = W NN

—

Assume an only sees Enc(max_val)...
Why could they learn max_val through timing this function?

13

Side Channels: Timing

Take this example function:
Finds the maximum value in a __secret__ buffer (int *arr)

int “find_max(__secret__ int *arr, int n) {
int max_val = INT_MINIMUM;
for (int i = 0; i < n; i++) {

if (arr[i] > max_val) {
max_val = arr[i];

}

}

return max_val;

© 0 1 O Ot = W NN

—

Assume an only sees Enc(max_val)...
Why could they learn max_val through timing this function?

14

Side Channels: Timing

Root cause = Secret dependent execution paths

Can be exploited with remote access
* Adv only needs to know the inputs
* Continue querying the function with different values

15

Side Channels: Timing

Root cause = Secret dependent execution paths

Can be exploited with remote access
* Adv only needs to know the inputs

* Continue querying the function with different values

—

leaky verify(MAC’, data):

MAC’
MAC,, . = MAC(k, data)
Data MAC integrity check foriin range(0, len(MAC,,,.):
Black Box if MAC’[i] I= MAC,,, [il:
Result e

return False

return True

Side Channels: Timing

Root cause = Secret dependent execution paths

Can be exploited with remote access
* Adv only needs to know the inputs

* Continue querying the function with different values

—

leaky verify(MAC’, data):

MAC’
MAC,, . = MAC(k, data)
Data MAC integrity check foriin range(0, len(MAC,,,.):
Black Box if MAC’[i] 1= MAC,,,[i]:
Result -

return False

return True

What could this black box be?.....

Side Channels: Timing

How to mitigate? - Constant-time programming

Constant-time programming
* Avoid secret-dependent if-statements
* Avoid secret-dependent memory accesses

* Avoid variable-time instructions
* DIV, MULT (some archs.), Floating point operations

18

Side Channels: Constant-time Programming

Some examples: how to mitigate the previous example?

© 0 1 O Ot = W NN

—

int “find_max(__secret__ int *arr, int n) {

int max_val = INT_MINIMUM;

for (int i = 0; i < n; i++) {

if (arr[i] > max_val) {
max_val = arr[i];

}

}

return max_val;

19

Side Channels: Constant-time Programming

Some examples: how to mitigate the previous example?

int *find_max(__secret__ int *arr, int n) {

<n; i++) {

= arr[i] > max_val;

max_val = (predicate * arr[i])
| (!predicate * max_val);

1

2 int max_val = INT_MINIMUM;
3 for (int i = 0; i

4 int predicate

5

6

7 }

8 return max_val;

9 }

Perform the same computation for each iteration
Record comparison Boolean into a predicate variable

Use value of predicate as a mask to set max_val for the current iteration

20

Side Channels: Constant-time Programming

Another examples: is this function constant-time?

int * get element (
int *arr, int size, secret int index

) A

int element = arr[index]
return element

21

Side Channels: Constant-time Programming

Another examples: is this function constant-time?

int * get element (
int *arr, int size, secret int index

) A

int element = arr[index]
return element

No -2 secret dependent memory access

How to patch?

22

Side Channels: Constant-time Programming

Another examples: is this function constant-time?

int * get element (

int *arr, 1int size, secret int 1ndex
) |
int element = 0
for (int 1=0; i<size; 1++) {
int value = arr[i];
int match = (1 == 1index);
element = (match * value) + (~match * element)

}

return element

Similar idea: perform memory access for each value
Record comparison of correct access to expected one
Use comparison (inmatch) as a maskto update element

23

Side Channels: Cache Timing Attacks

Architectural-specific timing attacks:

For example, exploiting cache:
* Accessing values from cache vs. has specific timing

Example: Intel CPUs

* L1 cache = 4 cycles

* L2 cache =2 12 cycles
L3 cache = 26-31 cycles
DRAM memory =2 120+ cycles

24

Side Channels: Cache Timing Attacks

Architectural-specific timing attacks:

For example, exploiting cache:
* Accessing values from cache vs. has specific timing

Example: Intel CPUs
* L1 cache = 4 cycles
* L2 cache =2 12 cycles
e L3 cache = 26-31 cycles
« DRAM memory = 120+ cycles

Some CPU instructions enable unprivileged cache maintenance
« prefetch = suggest CPU to load data into the catch
e c1flush -2 throw out datafrom all caches

25

Side Channels: Cache Timing Attacks

Concrete scenario:

* You run a secure program on a machine, and the program does one of two things:
* Encrypt()
* Decrypt()

You do not want anyone to know whether your program is encrypting a message or

decrypting a message

* Assuming trust in OS and hardware for now

The binary of your program is available

Attackers run their programs on the same machine

Their goal is to infer which operation your program is running

26

Side Channels: Cache Timing Attacks

Common access-driven cache attack strategies:

Flush + Reload

Prime + Probe

27

Flush + Reload

Attacker Address Space Victim Address space

Cache Encrypt()

Decrypt()

Init: victim program loaded while cache is empty

28

Flush + Reload

Attacker Address Space Victim Address space
\ = .~ Encrypt()
Decrypt()

Step 1: attacker loads the Encrypt() code into its address space

29

Flush + Reload

Attacker Address Space Victim Address space
\ cache Encrypt()
Decrypt()

Step 2: attacker flushes the cache
30

Flush + Reload

Attacker Address Space Victim Address space
Cache / Encrypt()
Decrypt()

Step 3a: victim performs Encrypt() operation

31

Flush + Reload

Attacker Address Space Victim Address space

Cache Encrypt()

B

Decrypt()

Step 3b: victim performs Decrypt() operation

32

Flush + Reload

Attacker Address Space Victim Address space
\ Cache / Encrypt()
Decrypt()

Step 4: attacker calls encrypt and times it =2 if occurred after 3a, will be fast
33

Flush + Reload

Attacker Address Space Victim Address space

Cache Encrypt()

B

Decrypt()

Step 4: if after step 3b, slow because itis no longer in cache

34

Flush + Reload

Summary:

* Load Encrypt() to gain virtual address to the same physical page
* Flush the cache line corresponding to Encrypt()

* Reload by calling again, measuring the time to detect if the victim
has loaded it

* Why? - Determine which code/data is in use, then attack further

35

Attacker Address Space Victim Address space

Cache Encrypt()

Decrypt()

Init: victim program loaded while the cache is empty
36

Attacker Address Space Victim Address space
% cache -1 Encrypt()
\ Decrypt()

Step 1: Attacker fills all available cache (prime)

37

Attacker Address Space Victim Address space

=

Cache Encrypt()

Decrypt()

/4

Step 2a: Victim evicts cache lines while performing Encrypt()
38

Attacker Address Space Victim Address space
% cache Encrypt()
\ \ ——
$\

Step 2b: Victim evicts cache lines while performing Decrypt()
39

Attacker Address Space Victim Address space

=

Cache Encrypt()

Decrypt()

/4

Step 3: attacker calls Encrypt after step 2a = fast!

40

Attacker Address Space Victim Address space
% cache Encrypt()
\ \ ——
$\

Step 3: attacker calls Encrypt after step 2b = slow

41

Flush + Reload

Summary:

* Prime: attacker fills targeted cache sets with their own data
* Victim executes and evicts some of the attacker’s cache lines

* Attacker re-accesses their cache lines, and timing reveals victim
activity

 Why? - Same as before

* Determine which code/data is in use, then attack further

42

Side channels in TPMs & TEEs

So, how does this relate to HW security measures?

43

Side channels in TPMs & TEEs

So, how does this relate to HW security measures?
Don’t forget the “Uncle Ben” principle of TEEs

TEE Manufacturer TEE Programmer
) y 1 ‘))) l —m AND’ S S5 o
I “ “ l I P 'A;V FAULT--ALL

MY FAULT IF
ONLY I HAD

W) STOPPED HIM
R WHEN T COULO
/ * HAVE/ BUT I
DION"T== AND NOW

—-=LINCLE BEN~-~
1S DEAD...

44

Side channels in TPMs & TEEs

So, how does this relate to HW security measures?
Don’t forget the “Uncle Ben” principle of TEEs

TEE Manufacturer TEE Programmer

| DEE l Y
1“ NDER ' l_ m Pty EAULT--ALL

! MY FAULT/ IF
t‘.- : ONLY I HAD
iy STOPPED HIM
. WHEN T COULO
‘ * HAVE/ BUT I
DIONT== AND NOW
—-=LINCLE BEN~-~
IS DEAD...

AND, A sHORT DISTANCE 7D
AWAY... G

Insecure code inside TEE boundary (including software-induced side
channels) break the hardware-provided guarantees o

Side channels in TPMs & TEEs

Recall from earlier...

—

leaky_verify(MAC’, data):

MAC’
MAC,,. = MAC(k, data)
Data MAC integrity check foriin range(0, len(MAC,,,):
Black Box if MAC’[i] I= MAC,, [il:
Result

return False

return True

What could this black box be?.....

46

Side channels in TPMs & TEEs

Recall from earlier...

—

leaky_verify(MAC’, data):

MAC’
MAC,,,. = MAC(k, data)
SGX Enclave
Data ..
or TPM foriin range(0, len(MAC,,,.):
] ’Ti] 1= 11
Result or TZ Secure-world code if MAC’[i] I= MAC .., [I]:

return False

return True

47

Side channels in TPMs & TEEs

Recall from earlier...

—

leaky_verify(MAC’, data):

MAC’
MAC,, . = MAC(k, data)
SGX Enclave
Data ..
or TPM foriin range(0, len(MAC,,,.):
] ’Til = D
Result or TZ Secure-world code if MAC’[i] 1= MAC,,,o[I]:

return False

return True

Timing attacks on TPMs and TEEs
are possible if not careful

48

Side channels in TPMs & TEEs

Example: TPM timing side channels

Particularly as it relates to firmware-TPMs (fTPMs)
* Software-based implementation of TPMs
* Addressing some limitations of physical TPM: low-bandwidth
* The idea = run the entire TPM functionality in software inside a TEE

e Software-virtualized TPM
 Intel fTPM

49

Side channels in TPMs & TEEsS

Example: TPM timing side channels

Firmware TPMs depicted:

TrustZone-capable CPU

50

Side channels in TPMs & TEEsS

Example: TPM timing side channels
Firmware TPMs depicted:

TrustZone-capable CPU

51

Side channels in TPMs & TEES

Example: TPM timing side channels

Firmware TPMs depicted:

TrustZone-capable CPU

52

Side channels in TPMs & TEES

Example: TPM timing side channels

usenix
.' THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

TPM-FaiL: TPM meets Timing and Lattice Attacks

Daniel Moghimi and Berk Sunar, Worcester Polytechnic Institute,
Worcester, MA, USA; Thomas Eisenbarth, University of Liibeck, Liibeck,
Germany; Nadia Heninger, University of California, San Diego, CA, USA

https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-tpm

TPM-Fail paper

53

https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-tpm
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-tpm
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-tpm
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-tpm
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-tpm

Side channels in TPMs & TEEs

Example: fTPM timing side channels in Intel and STMicroelctronic

107 x108
X
8 it L leTeT
S a8} B :
073 7 = 8 R :
ﬁ 87+ N S, BB 8 B B o
3 + 0 L HT O q 8 [S]
2 8.65 T R = T T 475 _
? et . © D S & e
oo o iy B T S Pe
a5 = B T L = 7 =85 =8 -
244 245 246 247 248 249 250 251 252 253 254 255 256 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
Bit Length Bit Length
STMicroelectronics fTPM signature generation Intel fTPM signature generation

fTPMs were found to have timing side channels for ECDSA signature
generation

* ECDSA scalar multiplication depends on nonce length

54

Side channels in TPMs & TEEs

Example: Intel SGX

 Recall 2

* Enclave pagesis placed in EPC
* Metadata stored in EPCM
* Both cannot be directly modified (only through EADD before EINIT)

* Malicious OS cannot directly modify

* However: entire memory hierarchy is shared
* Enclave and non-enclave share cache
* Enclave and non-enclave share other memory modules (DRAM module)

* Additionally:
* Quter world can invoke exits from enclave =2 Asynchronous exits (AEX)
* Pages have “accessed” and “dirty” bits observable by OS

55

Side channels in TPMs & TEEs

Example: Intel SGX = sneaky page monitoring (SPM)
Goal: exploit page faults to learn control flow of enclave

Wait and check

Y

Check PTEs
flags

Get enclave
base address

Start x

- Record page set 1 I
- Clear PTEs flags

- TLB shootdowns
ry

“Leaky Cauldron on the Dark Land: Understanding Memory Side-Channel Hazards in SGX”

56

https://dl.acm.org/doi/pdf/10.1145/3133956.3134038
https://dl.acm.org/doi/pdf/10.1145/3133956.3134038
https://dl.acm.org/doi/pdf/10.1145/3133956.3134038

Side channels in TPMs & TEEs

Example: TrustZone
* Timing side channels

* Typical cache-timing attacks don’t work in the same way
* NS-bitin the cache

* Slightly modified version of Prime-Probe is still possible

* Also interrupt-based attacks

* |[f misconfigured interrupt controller, can invoke interrupts to return to
Normal World

57

Side channels in TPMs & TEEs

Example: TrustZone version of Prime+Probe

———— _—— b |
|
|
I
|

{

P Prime e————) \/ictim Execution e———————) Probe —'—) Result Analysis
|

Prime and Probe
Memory Allocation

- —— —— e e e o e -

|
|
S . S SN, SN ~ - - o

|
|
I
I PRIME ; VICTIM EXECUTION PROBE I
I |
: Attacker Victim Attacker Victim Attacker Victim
|
: Nonsecure Memory Secure Memory Nonsecure Memory Secure Memory Nonsecure Memory Secure Memory
I | Nonsecure APP Secure APP 4| Nonsecure APP Secure APP s | | Nonsecure APP Secure APP
I
[
|
|
I _ s _ »
I T CPU = CPU = $ CPU
() ()
I 5 Cache 2 Cache 5 2 Cache
1S ? : 8 ?
| . (@) : Q ¢
I Attacker Cache Line | NS Attacker Cache Line | NS Attacker Cache Line | NS
I T 7 BAAn ;
1 » | Attacker Cache Line | NS Victim Cache Line S < :x Victim Cache Line S
I
I Attacker Cache Line | NS Attacker Cache Line | NS Attacker Cache Line | NS
|
| I
I |
|
I
I
} 58

Many sources of side-channels must be considered

Some require physical access, others are possible to observe
remotely

* Constant-time programming

* Some tools to automate, but mostly done manually

* Some ISA support 2 e.g., conditional instructions in ARM

For fTPMs and TEEs:

* Fortiming side channels: Uncle Ben’s principle
 For other side channels: understand architectural behavior

59

That’s all for today!

Coming up....
* Ethics, law, regulations, and compliance

Reminders:
* A4 is due on July 25

60

https://watssec.github.io/cs453-s25/assignments/a4/
https://watssec.github.io/cs453-s25/assignments/a4/
https://watssec.github.io/cs453-s25/assignments/a4/

That’s all for today!

Resources:
* L eaky Cauldron

* Another SGX attack: SGX Step
* Load-step attack in TrustZone

* TruSpy cache attack in TrustZone
* TPM-Fail

61

https://dl.acm.org/doi/pdf/10.1145/3133956.3134038
https://dl.acm.org/doi/pdf/10.1145/3133956.3134038
https://dl.acm.org/doi/pdf/10.1145/3152701.3152706
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9586226&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9586226&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9586226&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9586226&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9586226&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9586226&tag=1
https://eprint.iacr.org/2016/980.pdf
https://eprint.iacr.org/2016/980.pdf
https://eprint.iacr.org/2016/980.pdf
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-tpm
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-tpm
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-tpm
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-tpm
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-tpm

62

	Default Section
	Slide 1: Module: Hardware & Mobile Security
	Slide 2: Reminders & Recap
	Slide 3: What is a side channel?
	Slide 4: What is a side channel?
	Slide 5: What is a side channel?
	Slide 6: Side Channels
	Slide 7: Side Channels: Bandwidth consumption
	Slide 8: Side Channels: Bandwidth consumption
	Slide 9: Side Channels: Bandwidth consumption
	Slide 10: Side Channels: Bandwidth consumption
	Slide 11: Side Channels: ‘”James Bonds” attacks
	Slide 12: Side Channels: ‘”James Bonds” attacks
	Slide 13: Side Channels: Timing
	Slide 14: Side Channels: Timing
	Slide 15: Side Channels: Timing
	Slide 16: Side Channels: Timing
	Slide 17: Side Channels: Timing
	Slide 18: Side Channels: Timing
	Slide 19: Side Channels: Constant-time Programming
	Slide 20: Side Channels: Constant-time Programming
	Slide 21: Side Channels: Constant-time Programming
	Slide 22: Side Channels: Constant-time Programming
	Slide 23: Side Channels: Constant-time Programming
	Slide 24: Side Channels: Cache Timing Attacks
	Slide 25: Side Channels: Cache Timing Attacks
	Slide 26: Side Channels: Cache Timing Attacks
	Slide 27: Side Channels: Cache Timing Attacks
	Slide 28: Flush + Reload
	Slide 29: Flush + Reload
	Slide 30: Flush + Reload
	Slide 31: Flush + Reload
	Slide 32: Flush + Reload
	Slide 33: Flush + Reload
	Slide 34: Flush + Reload
	Slide 35: Flush + Reload
	Slide 36: Prime + Probe
	Slide 37: Prime + Probe
	Slide 38: Prime + Probe
	Slide 39: Prime + Probe
	Slide 40: Prime + Probe
	Slide 41: Prime + Probe
	Slide 42: Flush + Reload
	Slide 43: Side channels in TPMs & TEEs
	Slide 44: Side channels in TPMs & TEEs
	Slide 45: Side channels in TPMs & TEEs
	Slide 46: Side channels in TPMs & TEEs
	Slide 47: Side channels in TPMs & TEEs
	Slide 48: Side channels in TPMs & TEEs
	Slide 49: Side channels in TPMs & TEEs
	Slide 50: Side channels in TPMs & TEEs
	Slide 51: Side channels in TPMs & TEEs
	Slide 52: Side channels in TPMs & TEEs
	Slide 53: Side channels in TPMs & TEEs
	Slide 54: Side channels in TPMs & TEEs
	Slide 55: Side channels in TPMs & TEEs
	Slide 56: Side channels in TPMs & TEEs
	Slide 57: Side channels in TPMs & TEEs
	Slide 58: Side channels in TPMs & TEEs
	Slide 59: Summary
	Slide 60: That’s all for today!
	Slide 61: That’s all for today!
	Slide 62

