
Module: Hardware & Mobile Security
Lecture: Side-channel attacks

Adam Caulfield
University of Waterloo

Spring 2025

CS 453/698: Software and Systems Security

1

Reminders & Recap
Reminders:
• A4 is released

• Due July 25th

Recap – last time we covered:

ARM TrustZone
• TZASC/TZMA: partition system resources
• NS-bit: internal to CPU, used by TZ-Aware MMU + Cache
• Secure world boots first
Android
• OS that leverages TZ
• Some features require SE

2

https://watssec.github.io/cs453-s25/assignments/a4/
https://watssec.github.io/cs453-s25/assignments/a4/

What is a side channel?
Definition: a mechanism by which an attacker can extract information
about a system or its operations by observing characteristics or
indirect effects that are not part of the system’s intended input or
output.

3

What is a side channel?
Definition: a mechanism by which an attacker can extract information
about a system or its operations by observing characteristics or
indirect effects that are not part of the system’s intended input or
output.

Metaphor: Locard’s exchange principle
In forensic science, Locard’s principle holds that: the perpetrator of a crime will
bring something into the crime scene and leave with something from it, and that
both can be used as forensic evidence → every contact leaves a trace

4

What is a side channel?
Definition: a mechanism by which an attacker can extract information
about a system or its operations by observing characteristics or
indirect effects that are not part of the system’s intended input or
output.

Metaphor: Locard’s exchange principle
In forensic science, Locard’s principle holds that: the perpetrator of a crime will
bring something into the crime scene and leave with something from it, and that
both can be used as forensic evidence → every contact leaves a trace

For computer security:
The execution of code will bring something to the hosting platform and leave with
something from it, and both can be used as side channels.

5

Side Channels
Examples of side channels

Bandwidth consumptions (e.g., network traffic)

“James Bond” attacks
• Thermal/audio footprints
• Power consumption

General timing side channels

Cache-timing channels

6

Side Channels: Bandwidth consumption

7

Alice Bob

3 KB

4 KB

2 KB

1 KB

Pages

1.1 KB 1 KB 2 KB

Alice and Bob Communicate:
Alice accesses health forum via encrypted channel with Bob
Adv. knows: bob hosts web forum & its content
But, cannot directly decrypt the downloaded content

Side Channels: Bandwidth consumption

8

Alice Bob

3 KB

4 KB

2 KB

1 KB

Pages

1.1 KB 1 KB 2 KB

Adv. determines size of all pages on health forum
Then, measures the size of Alice’s downloaded pages

Side Channels: Bandwidth consumption

9

Alice Bob

3 KB

4 KB

2 KB

1 KB

Pages

1.1 KB 1 KB 2 KB

Adv. determines size of all pages on health forum
Then, measures the size of Alice’s downloaded pages
Could potentially determine which webpage Alice is accessing
Potentially leaking private information

Side Channels: Bandwidth consumption

10

Another example:
Re-identification of Netflix video streaming
Burst sizes of a streamed scene of “Reservoir dogs”

Schster et al., USENIX Security 2017

https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-schuster.pdf

Side Channels: ‘”James Bonds” attacks

11

Any type of characteristic can be used as a side channel

Kaczmarek et al.: Thermal Side-Channel Attacks on Keyboard Input

https://arxiv.org/pdf/2210.02234
https://arxiv.org/pdf/2210.02234
https://arxiv.org/pdf/2210.02234
https://arxiv.org/pdf/2210.02234
https://arxiv.org/pdf/2210.02234
https://arxiv.org/pdf/2210.02234

Side Channels: ‘”James Bonds” attacks

12

Any type of characteristic can be used as a side channel

Cronin et al.: Charger-Surfing: Exploiting a Power Line Side-Channel for Smartphone Information Leakage

Side Channels:

https://www.usenix.org/system/files/sec21-cronin.pdf
https://www.usenix.org/system/files/sec21-cronin.pdf
https://www.usenix.org/system/files/sec21-cronin.pdf
https://www.usenix.org/system/files/sec21-cronin.pdf
https://www.usenix.org/system/files/sec21-cronin.pdf
https://www.usenix.org/system/files/sec21-cronin.pdf
https://www.usenix.org/system/files/sec21-cronin.pdf

Side Channels: Timing

13

Side Channels:

Take this example function:
Finds the maximum value in a __secret__ buffer (int * arr)

Assume an only sees Enc(max_val)…
Why could they learn max_val through timing this function?

Side Channels: Timing

14

Side Channels:

Take this example function:
Finds the maximum value in a __secret__ buffer (int * arr)

Assume an only sees Enc(max_val)…
Why could they learn max_val through timing this function?

Side Channels: Timing

15

Root cause → Secret dependent execution paths

Can be exploited with remote access
• Adv only needs to know the inputs
• Continue querying the function with different values

Side Channels: Timing

16

Root cause → Secret dependent execution paths

Can be exploited with remote access
• Adv only needs to know the inputs
• Continue querying the function with different values

MAC integrity check
Black Box

MAC’

Data

Result

leaky_verify(MAC’, data):

 MACtrue = MAC(k, data)

 for i in range(0, len(MACtrue):
 if MAC’[i] != MACtrue[i]:
 return False

 return True

Side Channels: Timing

17

Root cause → Secret dependent execution paths

Can be exploited with remote access
• Adv only needs to know the inputs
• Continue querying the function with different values

MAC integrity check
Black Box

MAC’

Data

Result

leaky_verify(MAC’, data):

 MACtrue = MAC(k, data)

 for i in range(0, len(MACtrue):
 if MAC’[i] != MACtrue[i]:
 return False

 return True
What could this black box be?.....

Side Channels: Timing

18

How to mitigate? → Constant-time programming

Constant-time programming
• Avoid secret-dependent if-statements
• Avoid secret-dependent memory accesses
• Avoid variable-time instructions

• DIV, MULT (some archs.), Floating point operations

Side Channels: Constant-time Programming

19

Some examples: how to mitigate the previous example?

Side Channels: Constant-time Programming

20

Some examples: how to mitigate the previous example?

Perform the same computation for each iteration
Record comparison Boolean into a predicate variable
Use value of predicate as a mask to set max_val for the current iteration

Side Channels: Constant-time Programming

21

Another examples: is this function constant-time?

int * get_element(

 int *arr, int size, __secret__ int index

) {

 int element = arr[index]

 return element

}

Another examples: is this function constant-time?

int * get_element(

 int *arr, int size, __secret__ int index

) {

 int element = arr[index]

 return element

}

Side Channels: Constant-time Programming

22

No → secret dependent memory access

How to patch?

Side Channels: Constant-time Programming

23

Another examples: is this function constant-time?

Similar idea: perform memory access for each value
Record comparison of correct access to expected one
Use comparison (in match) as a mask to update element

int * get_element(

 int *arr, int size, __secret__ int index

) {

 int element = 0

 for (int i=0; i<size; i++){

 int value = arr[i];

 int match = (i == index);

 element = (match * value) + (~match * element)

 }

 return element

}

Side Channels: Cache Timing Attacks

24

Architectural-specific timing attacks:

For example, exploiting cache:
• Accessing values from cache vs. has specific timing

Example: Intel CPUs
• L1 cache → 4 cycles
• L2 cache → 12 cycles
• L3 cache → 26-31 cycles
• DRAM memory → 120+ cycles

Some CPU instructions enable unprivileged cache maintenance
• prefetch → suggest CPU to load data into the catch
• clflush → throw out data from all caches

Side Channels: Cache Timing Attacks

25

Architectural-specific timing attacks:

For example, exploiting cache:
• Accessing values from cache vs. has specific timing

Example: Intel CPUs
• L1 cache → 4 cycles
• L2 cache → 12 cycles
• L3 cache → 26-31 cycles
• DRAM memory → 120+ cycles

Some CPU instructions enable unprivileged cache maintenance
• prefetch → suggest CPU to load data into the catch
• clflush → throw out data from all caches

Side Channels: Cache Timing Attacks

26

Concrete scenario:

• You run a secure program on a machine, and the program does one of two things:

• Encrypt()

• Decrypt()

• You do not want anyone to know whether your program is encrypting a message or

decrypting a message

• Assuming trust in OS and hardware for now

• The binary of your program is available

• Attackers run their programs on the same machine

• Their goal is to infer which operation your program is running

Side Channels: Cache Timing Attacks

27

Common access-driven cache attack strategies:

Flush + Reload

Prime + Probe

Flush + Reload

28

Init: victim program loaded while cache is empty

Attacker Address Space

Cache

Victim Address space

Encrypt()

Decrypt()

Flush + Reload

29

Step 1: attacker loads the Encrypt() code into its address space

Attacker Address Space

Cache

Victim Address space

Encrypt()

Decrypt()

Flush + Reload

30

Step 2: attacker flushes the cache

Attacker Address Space

Cache

Victim Address space

Encrypt()

Decrypt()

Flush + Reload

31

Step 3a: victim performs Encrypt() operation

Attacker Address Space

Cache

Victim Address space

Encrypt()

Decrypt()

Flush + Reload

32

Step 3b: victim performs Decrypt() operation

Attacker Address Space

Cache

Victim Address space

Encrypt()

Decrypt()

Flush + Reload

33

Step 4: attacker calls encrypt and times it → if occurred after 3a, will be fast

Attacker Address Space

Cache

Victim Address space

Encrypt()

Decrypt()

Flush + Reload

34

Step 4: if after step 3b, slow because it is no longer in cache

Attacker Address Space

Cache

Victim Address space

Encrypt()

Decrypt()

Flush + Reload
Summary:

• Load Encrypt() to gain virtual address to the same physical page

• Flush the cache line corresponding to Encrypt()

• Reload by calling again, measuring the time to detect if the victim
has loaded it

• Why? → Determine which code/data is in use, then attack further

35

Prime + Probe

36

Init: victim program loaded while the cache is empty

Attacker Address Space

Cache

Victim Address space

Encrypt()

Decrypt()

Prime + Probe

37

Step 1: Attacker fills all available cache (prime)

Attacker Address Space

Cache

Victim Address space

Encrypt()

Decrypt()

Prime + Probe

38

Step 2a: Victim evicts cache lines while performing Encrypt()

Attacker Address Space

Cache

Victim Address space

Encrypt()

Decrypt()

Prime + Probe

39

Step 2b: Victim evicts cache lines while performing Decrypt()

Attacker Address Space

Cache

Victim Address space

Encrypt()

Decrypt()

Prime + Probe

40

Step 3: attacker calls Encrypt after step 2a → fast!

Attacker Address Space

Cache

Victim Address space

Encrypt()

Decrypt()

Prime + Probe

41

Attacker Address Space

Cache

Victim Address space

Encrypt()

Decrypt()

Step 3: attacker calls Encrypt after step 2b → slow

Flush + Reload
Summary:

• Prime: attacker fills targeted cache sets with their own data

• Victim executes and evicts some of the attacker’s cache lines

• Attacker re-accesses their cache lines, and timing reveals victim
activity

• Why? → Same as before
• Determine which code/data is in use, then attack further

42

Side channels in TPMs & TEEs
So, how does this relate to HW security measures?

43

Side channels in TPMs & TEEs
So, how does this relate to HW security measures?
Don’t forget the “Uncle Ben” principle of TEEs

44

TEE Manufacturer TEE Programmer

Side channels in TPMs & TEEs
So, how does this relate to HW security measures?
Don’t forget the “Uncle Ben” principle of TEEs

45

TEE Manufacturer TEE Programmer

Insecure code inside TEE boundary (including software-induced side
channels) break the hardware-provided guarantees

Side channels in TPMs & TEEs
Recall from earlier…

46

MAC integrity check
Black Box

MAC’

Data

Result

leaky_verify(MAC’, data):

 MACtrue = MAC(k, data)

 for i in range(0, len(MACtrue):
 if MAC’[i] != MACtrue[i]:
 return False

 return True
What could this black box be?.....

Side channels in TPMs & TEEs
Recall from earlier…

47

SGX Enclave
or TPM

or TZ Secure-world code

MAC’

Data

Result

leaky_verify(MAC’, data):

 MACtrue = MAC(k, data)

 for i in range(0, len(MACtrue):
 if MAC’[i] != MACtrue[i]:
 return False

 return True

Side channels in TPMs & TEEs
Recall from earlier…

48

SGX Enclave
or TPM

or TZ Secure-world code

MAC’

Data

Result

leaky_verify(MAC’, data):

 MACtrue = MAC(k, data)

 for i in range(0, len(MACtrue):
 if MAC’[i] != MACtrue[i]:
 return False

 return True
Timing attacks on TPMs and TEEs

are possible if not careful

Side channels in TPMs & TEEs

49

Example: TPM timing side channels

Particularly as it relates to firmware-TPMs (fTPMs)
• Software-based implementation of TPMs
• Addressing some limitations of physical TPM: low-bandwidth
• The idea → run the entire TPM functionality in software inside a TEE
• Software-virtualized TPM
• Intel fTPM

Side channels in TPMs & TEEs

50

Example: TPM timing side channels
Firmware TPMs depicted:

Process 1

Rich OS (e.g., Linux)

Process 2

TrustZone-capable CPU

Trusted App 1

Small Trusted OS

Trusted App 2

Side channels in TPMs & TEEs

51

Example: TPM timing side channels
Firmware TPMs depicted:

Process 1

Rich OS (e.g., Linux)

Process 2

TrustZone-capable CPU

Trusted App 1

Small Trusted OS fTPM

Trusted App 2

Side channels in TPMs & TEEs

52

Example: TPM timing side channels
Firmware TPMs depicted:

Process 1

Rich OS (e.g., Linux)

Process 2

TrustZone-capable CPU

Trusted App 1

Small Trusted OS fTPM

Trusted App 2

Side channels in TPMs & TEEs

53

Example: TPM timing side channels

TPM-Fail paper

https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-tpm
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-tpm
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-tpm
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-tpm
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-tpm

Side channels in TPMs & TEEs

54

Example: fTPM timing side channels in Intel and STMicroelctronic

fTPMs were found to have timing side channels for ECDSA signature
generation
• ECDSA scalar multiplication depends on nonce length

STMicroelectronics fTPM signature generation Intel fTPM signature generation

Side channels in TPMs & TEEs

55

Example: Intel SGX
• Recall →

• Enclave pages is placed in EPC
• Metadata stored in EPCM
• Both cannot be directly modified (only through EADD before EINIT)

• Malicious OS cannot directly modify
• However: entire memory hierarchy is shared

• Enclave and non-enclave share cache
• Enclave and non-enclave share other memory modules (DRAM module)

• Additionally:
• Outer world can invoke exits from enclave → Asynchronous exits (AEX)
• Pages have “accessed” and “dirty” bits observable by OS

Side channels in TPMs & TEEs

56

Example: Intel SGX → sneaky page monitoring (SPM)
Goal: exploit page faults to learn control flow of enclave

“Leaky Cauldron on the Dark Land: Understanding Memory Side-Channel Hazards in SGX”

https://dl.acm.org/doi/pdf/10.1145/3133956.3134038
https://dl.acm.org/doi/pdf/10.1145/3133956.3134038
https://dl.acm.org/doi/pdf/10.1145/3133956.3134038

Side channels in TPMs & TEEs

57

Example: TrustZone
• Timing side channels
• Typical cache-timing attacks don’t work in the same way

• NS-bit in the cache

• Slightly modified version of Prime-Probe is still possible
• Also interrupt-based attacks

• If misconfigured interrupt controller, can invoke interrupts to return to
Normal World

Side channels in TPMs & TEEs

58

Example: TrustZone version of Prime+Probe

Summary
Many sources of side-channels must be considered

Some require physical access, others are possible to observe
remotely

• Constant-time programming
• Some tools to automate, but mostly done manually
• Some ISA support → e.g., conditional instructions in ARM

For fTPMs and TEEs:
• For timing side channels: Uncle Ben’s principle
• For other side channels: understand architectural behavior

59

That’s all for today!
Coming up….
• Ethics, law, regulations, and compliance

Reminders:
• A4 is due on July 25

60

https://watssec.github.io/cs453-s25/assignments/a4/
https://watssec.github.io/cs453-s25/assignments/a4/
https://watssec.github.io/cs453-s25/assignments/a4/

That’s all for today!
Resources:
• Leaky Cauldron
• Another SGX attack: SGX Step
• Load-step attack in TrustZone
• TruSpy cache attack in TrustZone
• TPM-Fail

61

https://dl.acm.org/doi/pdf/10.1145/3133956.3134038
https://dl.acm.org/doi/pdf/10.1145/3133956.3134038
https://dl.acm.org/doi/pdf/10.1145/3152701.3152706
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9586226&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9586226&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9586226&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9586226&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9586226&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9586226&tag=1
https://eprint.iacr.org/2016/980.pdf
https://eprint.iacr.org/2016/980.pdf
https://eprint.iacr.org/2016/980.pdf
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-tpm
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-tpm
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-tpm
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-tpm
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-tpm

62

	Default Section
	Slide 1: Module: Hardware & Mobile Security
	Slide 2: Reminders & Recap
	Slide 3: What is a side channel?
	Slide 4: What is a side channel?
	Slide 5: What is a side channel?
	Slide 6: Side Channels
	Slide 7: Side Channels: Bandwidth consumption
	Slide 8: Side Channels: Bandwidth consumption
	Slide 9: Side Channels: Bandwidth consumption
	Slide 10: Side Channels: Bandwidth consumption
	Slide 11: Side Channels: ‘”James Bonds” attacks
	Slide 12: Side Channels: ‘”James Bonds” attacks
	Slide 13: Side Channels: Timing
	Slide 14: Side Channels: Timing
	Slide 15: Side Channels: Timing
	Slide 16: Side Channels: Timing
	Slide 17: Side Channels: Timing
	Slide 18: Side Channels: Timing
	Slide 19: Side Channels: Constant-time Programming
	Slide 20: Side Channels: Constant-time Programming
	Slide 21: Side Channels: Constant-time Programming
	Slide 22: Side Channels: Constant-time Programming
	Slide 23: Side Channels: Constant-time Programming
	Slide 24: Side Channels: Cache Timing Attacks
	Slide 25: Side Channels: Cache Timing Attacks
	Slide 26: Side Channels: Cache Timing Attacks
	Slide 27: Side Channels: Cache Timing Attacks
	Slide 28: Flush + Reload
	Slide 29: Flush + Reload
	Slide 30: Flush + Reload
	Slide 31: Flush + Reload
	Slide 32: Flush + Reload
	Slide 33: Flush + Reload
	Slide 34: Flush + Reload
	Slide 35: Flush + Reload
	Slide 36: Prime + Probe
	Slide 37: Prime + Probe
	Slide 38: Prime + Probe
	Slide 39: Prime + Probe
	Slide 40: Prime + Probe
	Slide 41: Prime + Probe
	Slide 42: Flush + Reload
	Slide 43: Side channels in TPMs & TEEs
	Slide 44: Side channels in TPMs & TEEs
	Slide 45: Side channels in TPMs & TEEs
	Slide 46: Side channels in TPMs & TEEs
	Slide 47: Side channels in TPMs & TEEs
	Slide 48: Side channels in TPMs & TEEs
	Slide 49: Side channels in TPMs & TEEs
	Slide 50: Side channels in TPMs & TEEs
	Slide 51: Side channels in TPMs & TEEs
	Slide 52: Side channels in TPMs & TEEs
	Slide 53: Side channels in TPMs & TEEs
	Slide 54: Side channels in TPMs & TEEs
	Slide 55: Side channels in TPMs & TEEs
	Slide 56: Side channels in TPMs & TEEs
	Slide 57: Side channels in TPMs & TEEs
	Slide 58: Side channels in TPMs & TEEs
	Slide 59: Summary
	Slide 60: That’s all for today!
	Slide 61: That’s all for today!
	Slide 62

