CS 453/698: Software and Systems Security

Module: Hardware & Mobile Security
Lecture: Trusted Execution Environments
Adam Caulfield

University of Waterloo
Spring 2025

Reminders & Recap

Reminders:

e A4disreleased
* Due July 25th

* Send your research project proposals to Meng and me!

Recap - last time we covered:
Trusted Platform Modules

Root of trust for storage - storage root key

Root of trust for reporting > endorsement key

Architecture & Operations

TPM-based attestation protocols
* Quote-based
e Seal-based

https://watssec.github.io/cs453-s25/assignments/a4/
https://watssec.github.io/cs453-s25/assignments/a4/

Continue: Hardware and Mobile Security
What are some techniques that address limitations of TPMs?

Some limitations of TPMs...

* Not programmable
* Dedicated cryptographic co-processor
* Fixed functionality

* Do not provide a runtime environment:
* Protects secrets from compromised host
* Provides integrity of reports despite compromised host

* Passive module
* No availability guarantees if the host is compromised

System Security (so far)

* Boot process loads the runtime environment (e.g., the OS)

* Further runtime security typically provided by the OS
* OS provides inter-processisolation
* Virtualization via memory management units (MMUs)
* A core component for many other runtime security features
* Control Flow Integrity
« Compartmentalization
* Etc...

System Security (so far)

* Boot process loads the runtime environment (e.g., the OS)

* Further runtime security typically provided by the OS
* OS provides inter-processisolation
* Virtualization via memory management units (MMUs)
* A core component for many other runtime security features
* Control Flow Integrity
« Compartmentalization
* Etc...

* OS also does a lot of other things for our system...
* Memory allocation, configuring MMU, context switches
Task scheduling
Interfacing with hardware peripherals
Disk, network stack, GPU
TPM & MMU 5

System Security (so far)

* Boot process loads the runtime environment (e.g., the OS)

* Further runtime security typically provided by the OS

OS provides inter-process isolation

Virtualization via memory management units (MMUs)

A core component for many other runtime security features
Control Flow Integrity

Compartmentalization

Etc...

* OS also does a lot of other things for our system...

Memory allocation, configuring MMU, context switches
Task scheduling

Interfacing with hardware peripherals

Disk, network stack, GPU

TPM & MMU

Millions of lines of low-level &
complex code running as
privileged!

Huge TCB!!!
A single vulnerability in the

privileged code can undermine all
guarantees.

OS-based runtime (in)security

Boot
Fower-up / Ressat
System startup BIOS / BootMonitor
Stage 1 bootloader Master Boot Record
Stage 2 bootloader LILO, GRUB, &te.
Kermel Linux
[nit User-space
Operation

Loads some trusted
Operating System (OS)

OS-based runtime (in)security

Boot
Fower-up / Resst
System startup BIOS / BootMonitor
Stage 1 bootloader Master Boot Record
Stage 2 bootloader LILO, GRUB, &te.
Kermel Linux
OS
[nit User-space
Operation
Loads some trusted OS: launch and manage
Operating System (OS) the system and applications

8

OS-based runtime (in)security

Boot Runtime System Isolation
Fower-up / Ressat
System startup BIOS / BootMonitor
Stage 1 bootloader Master Boot Record
Stage 2 bootloader LILO, GRUB, etc. [|
Kemel Linux
[nit User-space
Operation
Loads some trusted OS: launch and manage
Operating System (OS) the system and applications

OS-based runtime (in)security

Boot Runtime System Isolation
Fower-up / Ressat

System startup BIOS / BootMonitor

Stage 1 bootloader Master Boot Record

Stage 2 bootloader LILO, GRUB, etc.

Kemel Linux
[nit User-space
Operation
Loads some trusted OS: launch and manage
Operating System (OS) the system and applications

10

OS-based runtime (in)security

1 - Malware exploits some OS vulnerability at runtime

Boot Runtime System Isolation
Fower-up / Ressat

System startup BIOS / BootMonitor

Stage 1 bootloader Master Boot Record

Stage 2 bootloader LILO, GRUB, &te.

Kemel Linux
[nit User-space
Operation
Loads some trusted OS: launch and manage
Operating System (OS) the system and applications

11

OS-based runtime (in)security

Boot

2 — Modifies page tables/MMU at will

Fower-up / Ressat

System startup

BIOS / BootManitor

Stage 1 bootloader

Master Baat Record

Stage 2 bootloader

LILO, GRUB, ete.

Kermel

Linux

it

User-space

Operation

Loads some trusted
Operating System (OS)

Runtime System Isolation

OS: launch and manage
the system and applications

12

OS-based runtime (in)security

Boot

2 — Modifies page tables/MMU at will

Fower-up / Ressat

System startup

BIOS / BootManitor

Stage 1 bootloader

Master Baat Record

Stage 2 bootloader

LILO, GRUB, ete.

Kermel

Linux

it

User-space

Operation

Loads some trusted
Operating System (OS)

Runtime System Isolation

OS: launch and manage
the system and applications

13

OS-based runtime (in)security

Boot

3 - Complete Host Compromise

Fower-up / Resst

System startup

BIOS / BootManitor

Stage 1 bootloader

Master Baat Record

Stage 2 bootloader

LILO, GRUB, ete.

Kermel

Linux

it

User-space

Operation

Loads some trusted
Operating System (OS)

Runtime System Isolation

OS: launch and manage
the system and applications

14

Trusted Execution Environments (TEES)

* Set of techniques and architectures aimed to reduce the size of the TCB

Implementing the runtime security guarantees

15

Trusted Execution Environments (TEES)

* Set of techniques and architectures aimed to reduce the size of the TCB

Implementing the runtime security guarantees

* Designed to withstand full compromise of the “feature-rich operating

system” (e.g., Linux, Android, etc)

e How?

16

Trusted Execution Environments (TEES)

* Set of techniques and architectures aimed to reduce the size of the TCB

Implementing the runtime security guarantees

* Designed to withstand full compromise of the “feature-rich operating
system” (e.g., Linux, Android, etc)
* How?

- Creates another runtime system isolated from the main system

dedicated for security critical tasks

* Manipulate cryptographic secrets

compromised

« Compute on privacy sensitive data runtime . protect runtime

| used thesystemto against the system

17

Trusted Execution Environments (TEES)

TEEs are applied in various system models.

User-space

System-wide

Virtual machines

Servers, laptops, desktops, mobile devices, embedded systems

Various names depending on the model
* “Trusted Part”, “trusted world”, “secure world”, “enclave”

18

TEE vs. TPMs

TPMs

e TPM secrets are not visible outside of the TPM

TEEs

19

TEE vs. TPMs

TPMs

e TPM secrets are not visible outside of the TPM

TEEs

e TEE secrets are not visible outside of the TEE

20

TEE vs. TPMs

TPMs
e TPM secrets are not visible outside of the TPM

* Small, well-defined APl to communicated with trusted TPM

TEEs

e TEE secrets are not visible outside of the TEE

21

TEE vs. TPMs

TPMs
e TPM secrets are not visible outside of the TPM

* Small, well-defined APl to communicated with trusted TPM

TEEs
e TEE secrets are not visible outside of the TEE

 Small, well-defined APl to communicated with trusted “world”

22

TEE vs. TPMs

TPMs

* TPM secrets are not visible outside of the TPM

* Small, well-defined APl to communicated with trusted TPM

* Fixed functionality (specified by TCG, implemented by TPM manufacturer)
TEEs

* TEE secrets are not visible outside of the TEE

 Small, well-defined APl to communicated with trusted “world”

23

TEE vs. TPMs

TPMs

* TPM secrets are not visible outside of the TPM

* Small, well-defined APl to communicated with trusted TPM

* Fixed functionality (specified by TCG, implemented by TPM manufacturer)
TEEs

* TEE secrets are not visible outside of the TEE

 Small, well-defined APl to communicated with trusted “world”

* Programmable!

24

TEE vs. TPMs

Key difference: TEEs are programmable!
* Programmer can decide the behavior of the “trusted part”

25

TEE vs. TPMs

Key difference: TEEs are programmable!
* Programmer can decide the behavior of the “trusted part”

* That comes with a great responsibility....

TEE Manufacturer TEE Programmer

’ /| AND, A sHORT DISTANCE D
'{ 1 ' ' ' ! | AWAY... A a" S :
NEIEIIDEN Al

W MY FAULT--ALL ,.

MY FAULT/ IF
‘ ‘ ONLY I HAD
iy STOPPED HIM

Ry WHEN I COULo
. * HAVE/ BUT I
D/ION'"T-= AND NOW
—=LINCLE BEN-—~

IS DEAD...

Z e - A
[.

26

Trusted Execution Environments

No magic:
* Isolation: A bugin the rich OS will not compromise the TEE

BUT...

 Abuginthe TEE’s trusted part can still compromise the TEE so...

27

Trusted Execution Environments

No magic:

* Isolation: A bugin the rich OS will not compromise the TEE

BUT...

 Abuginthe TEE’s trusted part can still compromise the TEE so...

A TEE’s trusted part (TCB) must be kept small and simple for verification.

Whenever possible, non-security critical functions should remain outside of
the trusted part

28

TEE vs. TPMs (continued)

TPMs
* Independent peripheral device

* Passive in nature

TEEs
* Usually implemented as a part of the main CPU itself

» Sometimes can be “active” (see more next lecture...)

29

Trusted Execution Environments (TEE)

In this course, we will cover TEEs from two perspectives:

User-space TEEs
* Focused on high-end systems
* Intel SGX —-today!

System-level TEE (“split-world”)
* Applicable to high-end, mobile, embedded systems
* ARM TrustZone in Android — next class

30

Intel SGX Overview

What is Intel SGX’s approach for creating a TEE?
Intel SGX Approach:

 Add CPU hardware support to create one (or multiple) “mini-secure worlds” for

each user-space process

* A“mini-secure world” is called enclave

31

Intel SGX Overview

Runtime System

32

Intel SGX Overview

Runtime System

Enclave is a protected
part of the user-space

SGX
process

Enclave

33

Intel SGX Overview

Runtime System

Enclave Enclave
U A}

34

Intel SGX Overview

Runtime System

Full software
compromise

BUT, the hardware
guarantees that the
enclave memory
remains inaccessible

35

Intel SGX Overview

Each enclave lives within the virtual space of its process

Unprivileged = cannot access OS resources directly

But, OS is also “unprivileged with respect to enclave contents”

* Only the enclave can access its own code and data

Enclave:

 Canonly access data code/data within the same process

A compromised enclave can not escalate to the OS or other processes

36

Intel SGX Overview

Runtime System

What happens?

Enclave Enclave

37

Intel SGX Overview

Runtime System

What happens?

Enclave

38

Intel SGX Overview

- Untrusted

Trusted

Flow within a process...

Application in User-space

Enclave entry points

Enclave

Applications are split into two parts: the secure and non-secure

39

Intel SGX Overview

- Untrusted

Trusted

Flow within a process...

Application in User-space

Enclave entry points

Enclave

1. Create Enclave l

The Non-secure part defines and launches the secure enclave

The enclave is placed in SGX reserved & protected part of memory

40

How? CPU architectural features (coming up...)

Intel SGX Overview

- Untrusted

Trusted

Flow within a process...

Application in User-space

Enclave entry points

Enclave

m

1. Create Enclave
1. Create Enclave | i —
2. Invoke enclave l

3. Execute

When an enclave function is called, it must go through a dedicated
entry point. This is in the form of an ecall

Once inside, only enclave code can access its data. !

Intel SGX Overview

- Untrusted

Trusted

Flow within a process...

Application in User-space

Enclave entry points

Enclave

m

1. Create Enclave
1. Create Enclave | i —
2. Invoke enclave l

3. Execute

4. Call outside

While executing, it might need to call a function outside of the enclave

(e.g., a syscall). Thisis in the form of an ocall

42

Intel SGX Overview

- Untrusted

Trusted

Flow within a process...

Application in User-space

Enclave entry points

Enclave

1. Create Enclave 3. Execute

m
N
2. Invoke enclave l

6. Continue exec.

4. Call outside

When the enclave function finishes, it safely returns to the application

43

Intel SGX Overview

- Untrusted

Trusted

Flow within a process...

Application in User-space

Important: Enclave entry points
* Untrusted code can create Enclave

enclaves 1. Create Enclave = 3. Execute
* Including malicious ones 2. Invoke enclave l

* Enclaves do not trust each

other

6. Continue exec.

* Theyshould not share

memory

When the enclave function finishes, it safely returns to the application

44

Intel SGX Architecture

Isolation in Intel SGX

Enclave life cycle

Memory Translation in SGX

Remote Attestation

45

Intel SGX Architecture

Isolation in Intel SGX

Intel SGX Architecture — Isolation

Key Architectural enablers:

Virtual : Address ' Physical
Address Space ! Translation . Address Space
Virtual : Manoin : Physical
Address . PRING : Address

: I |

i : System bus
i Page | v

: Tables i DRAM

47

Intel SGX Architecture — Isolation

Key Architectural enablers:

Virtual : Address ' Physical
Address Space ! Translation . Address Space
i SGX CPU E
Virtual | Mannin : Physical
Address . PRING : Address

I I |

i : System bus
i Page | v

: Tables i DRAM

When an enclave is running, memory checks are
configured by the CPU hardware itself, (hot the Rich OS) 48

Intel SGX Architecture — Isolation

Key Architectural enablers:

Virtual : Address ' Physical
Address Space ! Translation . Address Space
i SGX CPU E
Virtual | Mannin : Physical
Address . PRING : Address

: I |
i ' System bus
i Page | v
! Tables E Drs-g;(-;{AM

Reserved physical memory region for
SGX enclaves (128 MB) 49

Intel SGX Architecture — Isolation

Processor reserved memory (PRM)

« 128 MB (SGX V1.0)
* Protected from accesses by CPU

* Divided into two parts

Enclave page cache (EPC):

* Stores enclave pages (code & data)

EPC Map (EPCM):

e Used to store enclave metadata

* Used for security checks

Enclave

Enclave

Rich OS (e.g., Linux)

Memory

PRM

50

Intel SGX Architecture — Isolation

Processor reserved memory (PRM)

PRM
DRAM
« 128 MB (SGX V1.0) EPC
* Protected from accesses by CPU
* Divided into two parts
Enclave page cache (EPC): .

* Stores enclave pages (code & data)

EPC Map (EPCM):

e Used to store enclave metadata

* Used for security checks
51

Intel SGX Architecture — Isolation

Processor reserved memory (PRM)

PRM
DRAM
* 128 MB (SGX V1.0) EPC
P,: 4 KB page
* Protected from accesses by CPU
P,: 4 KB page
* Divided into two parts :
P;: 4 KB page
Enclave page cache (EPC): —

* Stores enclave pages (code & data)

EPC Map (EPCM):

e Used to store enclave metadata

* Used for security checks
52

Intel SGX Architecture — Isolation

Processor reserved memory (PRM)

DRAM PRM
« 128 MB (SGX V1.0) EPC
P.: 4 KB <
* Protected from accesses by CPU 1 £
P,: 4 KB page [
* Divided into two parts :
Enel he (EPC P,;: 4 KB page |
nclave page cache (): —
* Stores enclave pages (code & data) P, metadata

P, metadata

EPC Map (EPCM):

P« metadata

e Used to store enclave metadata

* Used for security checks
53

Intel SGX Architecture — Isolation

Page Table
Virtual Addr. per process Physical Addr.

ELRANGE

4 KB page

Enclave Linear Range (ELRANGE)

Virtual address range for an enclave 54

Intel SGX Architecture — Isolation

Page Table
Virtual Addr. per process Physical Addr.

ELRANGE

4 KB page

Typical mapping doesn’t work
since OS is untrusted 55

Intel SGX Architecture — Isolation

Page Table
Virtual Addr. per process Physical Addr.

ELRANGE

4 KB page

Malicious Address Translation (v1)
Illegal access via outside world S

Intel SGX Architecture — Isolation

Page Table
Virtual Addr. per process Physical Addr.

ELRANGE

4 KB page

Malicious Address Translation (v2)
Information leak 57

Intel SGX Architecture — Isolation

Page Table
Virtual Addr. per process Physical Addr.

ELRANGE o N R—
P,: 4 KB page

Malicious Address Translation (v3)
Illegal access via malicious enclave e

Intel SGX Architecture — Isolation

Page Table
Virtual Addr. per process Physical Addr.

ELRANGE

4 KB page

SGX Solution:
Keep page mapping metadata inside PRM (EPCM)

MMU performs additional check for specific enclave >

Intel SGX Architecture — Isolation

Page Table
Virtual Addr. per process Physical Addr.

ELRANGE

4 KB page

(PA, VA,
enclave id)

SGX Solution:
Keep page mapping metadata inside PRM (EPCM)

MMU performs additional check for specific enclave o0

Intel SGX Architecture — Isolation

Page Table
Virtual Addr. per process Physical Addr.

ELRANGE

4 KB page

(PA, VA,
enclave id)

Important:
EPCM metadata is set by CPU hardware when enclave is initialized

It is not changed while enclave runs (only after it dies) !

Intel SGX Architecture — Isolation

Page Table
Virtual Addr. per process Physical Addr.

ELRANGE

4 KB page

(PA, VA,
enclave id)

EPCM checked by each MMU translation

62

Intel SGX Architecture — Isolation

EPCM-MMU Checks as a whole:

Non—Enclave Access

Linear Physical

Address| Traditional 1A (aj4ceqq
——* Page Table

Checks

Address No

in EPC?

Enclave
Access?

Enclave Access

No Address
in EPC? Replace
Address
With Abort
Page
== 'l T)
Allow |
Memc }‘—-‘
ACC J

63

- ————————————————————

Intel SGX Architecture

Enclave life cycle

Intel SGX Architecture — Life Cycle

Enclave Initialization

SGX-specific instructions on Intel CPUs are used to support creation of an

enclave within a process:

* ECREATE - establish memory address for an enclave
* EADD - copies memory pages into an enclave

* EEXTEND - computes a hash of the enclave contents

e EINIT - initializes the enclave

65

Intel SGX Architecture — Life Cycle

Post-creation control flow:
Dedicated functions to enter and exit from the enclave:
e EENTER - call a function inside the enclave

 EEXIT - return from enclave into untrusted region

Teardown

 EREMOVE -remove the enclave

66

Intel SGX Architecture — Life Cycle

* BIOS sets up the PRM region
Physical Addr.

e At boottime

* Application starts creating an enclave

67

Intel SGX Architecture — Life Cycle

* BIOS sets up the PRM region
Virtual Addr. Physical Addr.

e At boottime

* Application starts creating an enclave

« ECREATE

. ELRANGE PRM
* Creates a memory address in PRM and

E1 Metadata

assigns ELRANGE in virtual address

space.

68

Intel SGX Architecture — Life Cycle

* EADD

Copy existing code/data into the PRM
Update mapping information

Repeat to add as many pages as

needed into the EPC region

Each added page will update mapping
info in EPCM entry accordingly

One EPCM entry per page

All through hardware

Virtual Addr.

ELRANGE

Code/Data

Physical Addr.

Code/Data

PRM

E1 Metadata

Code/Data

69

Intel SGX Architecture — Life Cycle

* EEXTEND

* Optional step
* Extends a hash-chain with added pages
* Recorded into a dedicated internal register > MRENCLAVE

e Sound familiar?

EADD |, [EEXTEND Jeexteno JEADD

M:t:g:ta \ | Data | | Location | Data | | Location | |

I

I

I

I

I

I /

I

I SHA-256 SHA-256 @
1

I

: MRENCLAVE® | MRENCLAVE! J_ MRENCLAVE?
I

Page
Metadata
SHA-256
MRENCLAVE3

MRENCLAVE*

70

Intel SGX Architecture — Life Cycle

 EEXTEND Works just like a PCR
inside the TPM

Optional step

One MRENCLAVE per
enclaveis in the PRM

Extends a hash-chain with added pages

Recorded into a dedicated internal register > MRENCLAVE

Sound familiar? Works just like extend in TPMs

Also includes location of extended data
—————————————— r——-———-——————————jl-——————————————————I-—————————————
EADD EEXTEND EEXTEND i EADD |

M:t:g:ta \ | Data | | Location | Data | | Location | |

I

I

I

I

I

I ! J
I

I SHA-256 SHA-256 SHA-256
1

I

: MRENCLAVE® | MRENCLAVE! J_ MRENCLAVE?

I

Page
Metadata
SHA-256
MRENCLAVE3

MRENCLAVE*

71

Intel SGX Architecture — Life Cycle

 EINIT
Virtual Addr. Physical Addr.

Code/Data

* |nitialize the enclave
* Finalize the measurements made by EEXTEND

e Cannot call EADD, EEXTEND after EINIT

* EENTER

ELRANGE PRM

* Activate and enter the enclave

| E1 Metadata |

Code/Data

* Switches to “enclave mode”

Code/Data

* Cannot call ENTER before calling EINIT

* EEXIT

* Exits enclave, switches to “normal mode”
72

Intel SGX Architecture — Isolation

All together:

EADD
EEXTEND

ECREATE Uninitialized

EINIT

Non-
existing
EREMOVE
EENTER
Initialized
In use

EEXIT

Initialized
Not in use

73

Intel SGX Architecture

Memory Translation in SGX

74

Intel SGX Architecture — Memory Translation

Virt Addr

CPU

MMU

Virtual Physical
Prefix Prefix

00001

00002

00003

00004

00005

24E78

045E2

AEC78

A2345

AF123

Phy Addr

Memory

BUS

75

Intel SGX Architecture — Memory Translation

Virt Addr
CPU
Prefix Prefix
00001 24E78
00002 045E2
00003 AEC78
00004 A2345
00005 AF123

When runnin
=> prevent

Phy Addr

SGX

[r— Check [r— BUS

Allowed
accesses
< AOOOO

>= BOOOO

Default table
(normal mode)

g in normal mode (hon-enclave)
all software accesses to PRM.

Memory

0xA00...0

Processor
Reserved
Memory
(PRM)

OxAFF...F

76

Intel SGX Architecture — Memory Translation

Memory

ECREATE(enclave1);

Virt Addr Phy Addr

CPU o] sl BUS

Check
Virtual Physical
Prefix Prefix
00001 24E78 Allowed Allowed 0xA00...0
accesses accesses

00002 045E2 < AOOOO .

Processor
00003 AEC78 >= BOOOO = Reservad

Memory
00004 A2345 Default table enclave1 table PR

(normal mode) (empty)
00005 AF123
——— |OXAFF...F

Create - create metadata entry for enclave

77

Intel SGX Architecture — Memory Translation

Memory

ECREATE(enclave1); ECREATE(enclave2);

Virt Addr Phy Addr

CPU o] sl BUS

Check
Virtual Physical
Prefix Prefix
00001 24E78 Allowed Allowed Allowed 0xAO00...0
accesses accesses accesses

00002 045E2 < A0O00O - -
Processor
00003 AEC78 >= BOOOO = - Reserved
00004 A2345 Default table enclavel1 table enclave2 table TISF?I:/IO)W
(normal mode) (empty) (empty)
00005 AF123 \ /
OXAFF...F

Create - create metadata entry for enclave

78

Intel SGX Architecture — Memory Translation

ECREATE(enclave1); ECREATE(enclave2); ECREATE(enclave3);

Virt Addr

CPU

MMU

Physical
Prefix

Prefix

00001 24E78
00002 045E2
00003 AEC78
00004 A2345
00005 AF123

Phy Addr

SGX

Check

Allowed
accesses
< AOOOO

>= BOOOO

Default table
(normal mode)

BUS

Allowed Allowed Allowed
accesses accesses accesses

enclavel table enclave2table enclave3table
(empty) (empty) (empty)

Create - create metadata entry for enclave
Stored within the PRM
“Allowed access table” 2 SGX Enclave Control Structure

Memory

0xA00...0

Processor
Reserved
Memory
(PRM)

OxAFF...F

79

Intel SGX Architecture — Memory Translation

Memory

EADD(enclave2, <pageA>)

Virt Addr Phy Addr
CPU MMU SGX BUS

Check I
Virtual Physical
Prefix Prefix
p— 2AE78 Allowed Allowed Allowed Allowed 0XA00...0
accesses accesses accesses accesses

00002 045E2 < AO0OO - - -
Processor
00003 AEC78 >= BOOOO = - - Reserved
Default table enclavel table enclave2table enclave3table Memory
00004 A2345 (PRM)
(normal mode) (empty) (empty) (empty)
00005 AF123 N\ /|
OXAFF...F

What happens now?

80

Intel SGX Architecture — Memory Translation

EADD(enclave2, <pageA>)

Virt Addr Phy Addr

CPU

MMU SGX BUS

Virtual
Prefix

00001

00002

00003

00004

00005

Check .
Physical
Prefix
24E78 Allowed Allowed Allowed Allowed
accesses accesses accesses accesses

045E2 < AOO0O

AEC78 >= BOOOO = - -

A2345 Default table enclavel table enclave2table enclave3table
(normal mode) (empty) (empty) (empty)

AF123

1. CPU finds a free space in PRM for <pageA>
2. CPU allocates <pageA>
3. CPU updates “allowed access” table

Memory

0xA00...0

Processor
Reserved
Memory
(PRM)

OxAFF...F

81

Intel SGX Architecture — Memory Translation

Memory

EADD(enclave2, <pageA>)

Virt Addr Phy Addr
CPU MMU SGX BUS

Check I
Virtual Physical
Prefix Prefix
p— 2AE78 Allowed Allowed Allowed Allowed 0XA00...0
accesses accesses accesses accesses

<pageA> 0xA2345

00002 045E2 < AO0OO _ A2345 -
Processor
00003 AEC78 >= BOOOO = - - Reserved
00004 A2345 Default table enclavel table enclave2table enclave3table TIZ?F::/IO)W
(normal mode) (empty) (empty)
00005 AF123 N\ /OxAFF...F

1. CPU finds a free space in PRM for <pageA>
2. CPU allocates <pageA>
3. CPU updates “allowed access” table 89

Intel SGX Architecture — Memory Translation

Memory
EADD(enclave2, <pageA>); EADD(enclave2, <pageB>)
Virt Addr Phy Addr
CPU MMU ,| SCX ,| BUS
Check
Virtual Physical
Prefix Prefix
p— 2AE78 Allowed Allowed Allowed Allowed 0XA0O...0
accesses accesses accesses accesses
<pageA> 0xA2345
U JBlE2 < A0000 AEC78 A2345 -
Processor
00003 AEC78 >= BOOOO - - - Reserved
<pageB> Memory
00004 A2345 Default table enclavel table enclave2table enclave3table
(PRM)
(normal mode) (empty)
00005 AF123 \)
OxAFF...F
1. CPU finds a free space in PRM for <pageB>
2. CPU allocates <pageB>
3. CPU updates “allowed access” table 83

Intel SGX Architecture — Memory Translation

EADD(enclave2, <pageA>); EADD(enclave2, <pageB>); EADD(enclave2, <pageC>)

Virt Addr

CPU

Virtual
Prefix

00001

00002

00003

00004

00005

24E78

045E2

AEC78

A2345

AF123

MMU

Physical

Phy Addr

SGX
Check

BUS

—

Allowed Allowed Allowed
accesses accesses accesses
< AOOOO AEC78 A2345
>= BOOOO - -

Default table enclavel1 table enclave2 table

(normal mode)

1. CPU finds a free space in PRM for <pageC>
2. CPU allocates <pageC>
3. CPU updates “allowed access” table

Allowed
accesses
AF123

enclaved table

Memory

0xA00...0

<pageA>

0xA2345

< pageB>

Processor
Reserved
Memory

< pageC>

(PRM)

OxAFF...F

84

Intel SGX Architecture — Memory Translation

Memory
EINIT(enclave2)
Virt Addr Phy Addr
CPU MMU I SGX I BUS
Check
Virtual Physical
Prefix Prefix
Allowed 0XA00...0

00001 24ET78 Allowed Allowed Allowed
accesses accesses accesses

accesses
<pageA> 0xA2345

00002 045E2 < AOOOO AEC78 A2345 AF123
Processor
00003 AEC78 >= BOOOO = - - 5 Reserved
< pageB>
Default table enclavel table enclave2table enclave3table Memory
00004 A2345 (PRM)
(normal mode) < pageC>
00005 AF123
OXAFF...F

Initialized enclave22... what does it mean?

85

Intel SGX Architecture — Memory Translation

Memory

EINIT(enclave?2);

Virt Addr Phy Addr
CPU MMU SGX BUS

Check

Virtual Physical

Prefix Prefix

p— 2AE78 Allowed Allowed Allowed Allowed 0XAQ0...0
accesses accesses accesses accesses

<pageA> 0xA2345

00002 045E2 < AOOOO AEC78 A2345 AF123
Processor
00003 AEC78 >= BOOOO = - - 5 Reserved
< pageB>
Default table enclavel table enclave2table enclave3table Memory
00004 A2345 (PRM)
(normal mode) < pageC>
00005 AF123
OXAFF...F

Initialized enclave2... what does it mean?
No modifications to enclave 2 past this point

86

Intel SGX Architecture — Memory Translation

Memory
EINIT(enclave2); EINIT(enclave1)
Virt Addr Phy Addr
CPU MMU .| SGX , BUS
Check
Virtual Physical
Prefix Prefix
p— 2AE78 Allowed Allowed Allowed Allowed 0XA00...0
accesses accesses accesses accesses
<pageA> 0xA2345
00002 045E2 < A0000 AEC78 A2345 AF123
Processor
00003 AEC78 >= BOOOO - = - 5 Reserved
< pageb>
00004 A2345 Default table enclavel table enclave2table enclave3table pas Memory
(PRM)
(normal mode) < pageC>
00005 AF123
OxAFF...F
Initialized enclave?2... what does it mean?
No modifications to enclave 2 past this point
No modifications to enclave 1 past this point -

Intel SGX Architecture — Memory Translation

Memory

EENTER

Virt Addr Phy Addr
CPU MMU SGX BUS

Check

Virtual Physical

Prefix Prefix

p— 2AE78 Allowed Allowed Allowed Allowed 0XAQ0...0
accesses accesses accesses accesses

<pageA> 0xA2345

00002 045E2 < AOOOO AEC78 A2345 AF123
Processor
00003 AEC78 >= BOOOO = - - 5 Reserved
< pageB>
Default table enclavel table enclave2table enclave3table Memory
00004 A2345 (PRM)
(normal mode) < pageC>
00005 AF123
OXAFF...F

Next step: execute the enclave with EENTER

88

Intel SGX Architecture — Memory Translation

Memory

Enclave Execution Example 1:
EENTER(enclave3); Virt Access: 0x00005123

Virt Addr Phy Addr
CPU MMU SGX BUS

Check

Virtual Physical

Prefix Prefix

p— 2AE78 Allowed Allowed Allowed Allowed 0XAQ0...0
accesses accesses accesses accesses

<pageA> 0xA2345

00002 045E2 < AO0O0O AEC78 A2345 AF123
Processor
00003 AEC78 >= BOOOO = - - 5 Reserved
< pageB>
00004 A2345 Default table enclavel table enclave2table enclave3table pag Memory
(PRM)
(normal mode) < pageC>
00005 AF123
OXAFF...F
What happens here?

89

Intel SGX Architecture — Memory Translation

Memory

Enclave Execution Example 1:
EENTER(enclave3); Virt Access: 0x00005123

Virt Addr Phy Addr
CPU MMU SGX BUS

Check

Virtual Physical

Prefix Prefix

p— 2AE78 Allowed Allowed Allowed Allowed 0XAQ0...0
accesses accesses accesses accesses

<pageA> 0xA2345

00002 045E2 < AO0O0O AEC78 A2345 AF123
Processor
00003 AEC78 >= BOOOO = - - 5 Reserved
< pageB>
00004 A2345 Default table enclavel table enclave2table enclave3table pag Memory
(PRM)
(normal mode) < pageC>
00005 AF123
OXAFF...F
What happens here?

Blocked: enclave3 never initialized

90

Intel SGX Architecture — Memory Translation

Memory

Enclave Execution Example 2:
EENTER(enclave2); Virt Access: 0x00004123

Virt Addr Phy Addr
CPU MMU SGX BUS

Check

Virtual Physical

Prefix Prefix

p— 2AE78 Allowed Allowed Allowed Allowed 0XAQ0...0
accesses accesses accesses accesses

<pageA> 0xA2345

00002 045E2 < AO0O0O AEC78 A2345 AF123
Processor
00003 AEC78 >= BOOOO = - - 5 Reserved
< pageB>
00004 A2345 Default table enclavel table enclave2table enclave3table pag Memory
(PRM)
(normal mode) < pageC>
00005 AF123
OXAFF...F
What happens here?

91

Intel SGX Architecture — Memory Translation

Memory

Enclave Execution Example 2:
EENTER(enclave2); Virt Access: 0x00004123

Virt Addr Phy Addr
CPU MMU SGX BUS

Check

Virtual Physical
Prefix Prefix

p— 2AE78 Allowed Allowed Allowed Allowed 0XA00...0
accesses accesses accesses accesses
<pageA> 0xA2345

00002 045E2 < AO0O0O AEC78 A2345 AF123
Processor
00003 AEC78 >= BOOOO = - - 5 Reserved
< pageB>
00004 A2345 Default table enclavel table enclave2table enclave3table pag Memory
(PRM)
(normal mode) < pageC>
00005 AF123
OXAFF...F
What happens here?

1. HW switches SGX check to enclave 2 table

92

Intel SGX Architecture — Memory Translation

Memory

Enclave Execution Example 2:
EENTER(enclave2); Virt Access: 0x00004123

Virt Addr Phy Addr
CPU MMU SGX BUS

Check

Virtual Physical
Prefix Prefix

Allowed Allowed Allowed 0XA00...0
accesses accesses accesses
<pageA> 0xA2345

00001 24E78 Allowed

accesses
00002 045E2 < AO0O0O AEC78 A2345 AF123
Processor
00003 AEC78 >= BOOOO = - - 5 Reserved
< pageB>
Default table enclavel table enclave2table enclave3table pag Memory
00004 A2345 (PRM)
(normal mode) < pageC>
00005 AF123
OXAFF...F
What happens here?

1. HW switches SGX check to enclave 2 table
2. MMU lookup = 0x0004 : A2345

93

Intel SGX Architecture — Memory Translation

Memory

Enclave Execution Example 2:
EENTER(enclave2); Virt Access: 0x00004123

Virt Addr Phy Addr
CPU MMU SGX BUS

Check

Virtual Physical
Prefix Prefix
00001 24E78 Allowed Allowed Allowed Allowed 0xA00...0
accesses accesses accesses accesse
<pageA> 0xA2345

00002 045E2 < AO00O AEC78 AF123
Processor
00003 AEC78 >= BOOOO = - - 5 Reserved
< pageB>
Default table enclavel table enclave2table enclave3table Memory
00004 A2345 (PRM)
(normal mode) < pageC>
00005 AF123
OXAFF...F
What happens here?

1. HW switches SGX check to enclave2 table
2. MMU lookup > 0x0004 : A2345
3. Check if access is allowed for enclave2 - pass! 94

Intel SGX Architecture — Memory Translation

Memory

Enclave Execution Example 3:
EENTER(enclave1); Virt Access: 0x00004123

Virt Addr Phy Addr
CPU MMU SGX BUS

Check

Virtual Physical
Prefix Prefix
p— 2AE78 Allowed Allowed Allowed Allowed 0XAQ0...0
accesses accesses accesses accesses
<pageA> 0xA2345

00002 045E2 < AOOOO AEC78 A2345 AF123
Processor
00003 AEC78 >= BOOOO = - - 5 Reserved
< pageB>
Default table enclavel table enclave2table enclave3table Memory
00004 A2345 (PRM)
(normal mode) < pageC>
00005 AF123
OXAFF...F

What happens here?

95

Intel SGX Architecture — Memory Translation

Enclave Execution Example 3: Discard!
EENTER(enclave1); Virt Access: 0x00004123

Virt Addr Phy Addr
CPU MMU .| SGX BUS
Check
Virtual Physical
Prefix Prefix

00001 24E78 Allowed Allowed Allowed Allowed
accesses accesses accesses accesses
ooRe 045E2 < A000O AECT78 A2345 AF123
00003 AEC78 >= BOOOO - - -
00004 A2345 Default table enclavel table | enclave2table enclave3table
(normal mode)

00005 AF123

What happens here?
1. HW switches SGX check to enclave table
2. MMU lookup = 0x0004 : A2345
3. Checkif access is allowed for enclave1 = discard!

Memory
0xA00...0
<pageA> 0xA2345
Processor
Reserved
< pageB> Memory
(PRM)
< pageC>
OXAFF...F

96

Intel SGX Architecture — Memory Translation

Memory
EEXIT
Virt Addr Phy Addr
CPU MMU sex | | BUS
Check
Virtual Physical
Prefix Prefix
p— 2AE78 AIIowed AIIowed Allowed Allowed 0XA00...0
accesses accesses accesses accesses
<pageA> | 0xA2345
00002 045E2 < AO0O0O AEC78 A2345 AF123
Processor
00003 AEC78 >= BOOOO = - - 5 Reserved
< pageB>
00004 A2345 Default table enclavel table enclave2table enclave3table pag Memory
(PRM)
(normal mode) < pageC>
00005 AF123
OXAFF...F
What happens here?
97

Intel SGX Architecture — Memory Translation

Memory

EEXIT

Virt Addr Phy Addr
CPU MMU SGX BUS

Check >

Virtual Physical

Prefix Prefix

p— 2AE78 Allowed Allowed Allowed Allowed 0XAQ0...0
accesses accesses accesses accesses

<pageA> 0xA2345

00002 045E2 < AOOOO AEC78 A2345 AF123
Processor
00003 AEC78 >= BOOOO = - - 5 Reserved
< pageB>
Default table enclavel table enclave2table enclave3table Memory
00004 A2345 (PRM)
(normal mode) < pageC>
00005 AF123 OKAFF.F

EEXIT switches back to the default table

Further Access not possible until EENTER again

98

Intel SGX Architecture

Remote Attestation

99

Intel SGX Architecture — Remote Attestation

SGX Remote Attestation:

* Use EEXTEND to measure data/code pages into MRENCLAVE
* Use EQUOTE to get a quote of the MRENCLAVE contents

* Problem: How to get signing keys to the Enclave?

* Intel’s Approach: Provision a Quoting Enclave with Provisioning key
* Provisioning key burned into the device
* Quoting enclave attests itself with provisioning key
* If passes, Intel passes an Attestation Key to Quoting Enclave

* Quoting then enclave uses Attestation Key for Remote Attestation of App Enclaves

100

Intel SGX Architecture — Remote Attestation

(1) An off platform challenger requests that its enclave produce an attestation

T
| Application [«—@ <+~ @D
| Enclave Application | Challenger
I O UserData ® g | @ g
| ot $
| User Platform @ () | @
: v v
| g:glgtg l Attestation
e | Verification
| O™ Key |
| |
Figure 1: Attestation Flow

101

Intel SGX Architecture — Remote Attestation

(2) Application requests attestation from the enclave

-
| Application |[«—@] @
| Enclave Application | Challenger
I O UserData ® g | @ g
| ot $
| User Platform @ () | @
: v v
| g:glgtg l Attestation
e | Verification
| O™ Key |
| |
Figure 1: Attestation Flow

102

Intel SGX Architecture — Remote Attestation

A local attestation occurs between the (3) Application Enclave and (4) Quoting Enclave

T
| Application [«—@] @
| Enclave Application | Challenger
I O UserData ® g | @ g
|]t $
| User Platformm @ | ® | @
: vl v
| g:glgtg l Attestation
e | Verification
| O™ Key |
| |
Figure 1: Attestation Flow

103

Intel SGX Architecture — Remote Attestation

(5) Quote is returned to the application and (6) sent back to the challenger

T
| Application [«—@] @
| Enclave Application | Challenger
I O UserData ® g | @ "
| BN $
| User Platform @ | ® | @
: v L] v
| g:glgtg l Attestation
e | Verification
| O™ Key |
| |
Figure 1: Attestation Flow

104

Intel SGX Architecture — Remote Attestation

(7) The challenger uses a verification service to verify the Quote

T
| Application [«—@] @
| Enclave Application | Challenger
I O UserData ® g | @ g
| ot $
| User Platform @ () | @
: v v
| g:glgtg l Attestation
e | Verification
| O™ Key |
| |
Figure 1: Attestation Flow

105

Intel SGX Architecture — Remote Attestation

Much more complicated process than TPM-based

Check out these detailed slides for more

Demo and examples of ECDSA Attestation with Intel SGX

106

https://www.andrew.cmu.edu/course/14-712-s20/applications/ln/14712-l22.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/quote-verification-attestation-with-intel-sgx-dcap.html

Intel SGX Architecture — Other features

Writing data to external storage

* Risky, also challenging without overheads

* Large data requires moving pages in and out often
* Requires encryption + integrity protection

* Enabled through Memory Encryption Engine - read more

 General use enables physical protection

* All memory writes out of the CPU are encrypted

* All memory reads into the CPU are decrypyted

107

https://docs.enclaive.cloud/confidential-cloud/technology-in-depth/intel-sgx/technology/concepts/enclaves

Intel SGX Architecture — Other features

Sealing:

* Bind measurement of the current enclave in MRENCLAVE to a key (EGETKEY)

Bind identity of enclave author to a key

Similar idea to what is provided by Wrap Keys in TPM

Read more

108

https://sgx101.gitbook.io/sgx101/sgx-bootstrap/sealing
https://sgx101.gitbook.io/sgx101/sgx-bootstrap/sealing

That’s all for today!

Coming up....
» System-wide TEE in Android = ARM TrustZone

Reminders:
* A4 is due onlJuly 25
* Research project proposals

Resources:

* "Intel’s SGX In-depth Architecture”-- Great Intel SGX slides by Syed Kamran
 “Quote Generation, Verification, and Attestation with Intel SGX DCAP”

* “Confidential Computing 101 — Intel SGX Technology”

* “Intel SGX Explained”

* “Life Cycle of an SGX Enclave”

« SGX 101

109

https://watssec.github.io/cs453-s25/assignments/a4/
https://watssec.github.io/cs453-s25/assignments/a4/
https://www.andrew.cmu.edu/course/14-712-s20/applications/ln/14712-l22.pdf
https://www.andrew.cmu.edu/course/14-712-s20/applications/ln/14712-l22.pdf
https://www.andrew.cmu.edu/course/14-712-s20/applications/ln/14712-l22.pdf
https://www.andrew.cmu.edu/course/14-712-s20/applications/ln/14712-l22.pdf
https://www.andrew.cmu.edu/course/14-712-s20/applications/ln/14712-l22.pdf
https://www.andrew.cmu.edu/course/14-712-s20/applications/ln/14712-l22.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/quote-verification-attestation-with-intel-sgx-dcap.html
https://www.intel.com/content/www/us/en/developer/articles/technical/quote-verification-attestation-with-intel-sgx-dcap.html
https://docs.enclaive.cloud/confidential-cloud/technology-in-depth/intel-sgx/technology/concepts/enclaves
https://docs.enclaive.cloud/confidential-cloud/technology-in-depth/intel-sgx/technology/concepts/enclaves
https://docs.enclaive.cloud/confidential-cloud/technology-in-depth/intel-sgx/technology/concepts/enclaves
https://docs.enclaive.cloud/confidential-cloud/technology-in-depth/intel-sgx/technology/concepts/enclaves
https://eprint.iacr.org/2016/086.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/intelsgxenclavelifecycle.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/intelsgxenclavelifecycle.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/intelsgxenclavelifecycle.pdf
https://sgx101.gitbook.io/sgx101
https://sgx101.gitbook.io/sgx101

110

	Default Section
	Slide 1: Module: Hardware & Mobile Security
	Slide 2: Reminders & Recap
	Slide 3: Today
	Slide 4: System Security (so far)
	Slide 5: System Security (so far)
	Slide 6: System Security (so far)
	Slide 7: OS-based runtime (in)security
	Slide 8: OS-based runtime (in)security
	Slide 9: OS-based runtime (in)security
	Slide 10: OS-based runtime (in)security
	Slide 11: OS-based runtime (in)security
	Slide 12: OS-based runtime (in)security
	Slide 13: OS-based runtime (in)security
	Slide 14: OS-based runtime (in)security
	Slide 15: Trusted Execution Environments (TEEs)
	Slide 16: Trusted Execution Environments (TEEs)
	Slide 17: Trusted Execution Environments (TEEs)
	Slide 18: Trusted Execution Environments (TEEs)
	Slide 19: TEE vs. TPMs
	Slide 20: TEE vs. TPMs
	Slide 21: TEE vs. TPMs
	Slide 22: TEE vs. TPMs
	Slide 23: TEE vs. TPMs
	Slide 24: TEE vs. TPMs
	Slide 25: TEE vs. TPMs
	Slide 26: TEE vs. TPMs
	Slide 27: Trusted Execution Environments
	Slide 28: Trusted Execution Environments
	Slide 29: TEE vs. TPMs (continued)
	Slide 30: Trusted Execution Environments (TEE)
	Slide 31: Intel SGX Overview
	Slide 32: Intel SGX Overview
	Slide 33: Intel SGX Overview
	Slide 34: Intel SGX Overview
	Slide 35: Intel SGX Overview
	Slide 36: Intel SGX Overview
	Slide 37: Intel SGX Overview
	Slide 38: Intel SGX Overview
	Slide 39: Intel SGX Overview
	Slide 40: Intel SGX Overview
	Slide 41: Intel SGX Overview
	Slide 42: Intel SGX Overview
	Slide 43: Intel SGX Overview
	Slide 44: Intel SGX Overview
	Slide 45: Intel SGX Architecture
	Slide 46: Intel SGX Architecture
	Slide 47: Intel SGX Architecture – Isolation
	Slide 48: Intel SGX Architecture – Isolation
	Slide 49: Intel SGX Architecture – Isolation
	Slide 50: Intel SGX Architecture – Isolation
	Slide 51: Intel SGX Architecture – Isolation
	Slide 52: Intel SGX Architecture – Isolation
	Slide 53: Intel SGX Architecture – Isolation
	Slide 54: Intel SGX Architecture – Isolation
	Slide 55: Intel SGX Architecture – Isolation
	Slide 56: Intel SGX Architecture – Isolation
	Slide 57: Intel SGX Architecture – Isolation
	Slide 58: Intel SGX Architecture – Isolation
	Slide 59: Intel SGX Architecture – Isolation
	Slide 60: Intel SGX Architecture – Isolation
	Slide 61: Intel SGX Architecture – Isolation
	Slide 62: Intel SGX Architecture – Isolation
	Slide 63: Intel SGX Architecture – Isolation
	Slide 64: Intel SGX Architecture
	Slide 65: Intel SGX Architecture – Life Cycle
	Slide 66: Intel SGX Architecture – Life Cycle
	Slide 67: Intel SGX Architecture – Life Cycle
	Slide 68: Intel SGX Architecture – Life Cycle
	Slide 69: Intel SGX Architecture – Life Cycle
	Slide 70: Intel SGX Architecture – Life Cycle
	Slide 71: Intel SGX Architecture – Life Cycle
	Slide 72: Intel SGX Architecture – Life Cycle
	Slide 73: Intel SGX Architecture – Isolation
	Slide 74: Intel SGX Architecture
	Slide 75: Intel SGX Architecture – Memory Translation
	Slide 76: Intel SGX Architecture – Memory Translation
	Slide 77: Intel SGX Architecture – Memory Translation
	Slide 78: Intel SGX Architecture – Memory Translation
	Slide 79: Intel SGX Architecture – Memory Translation
	Slide 80: Intel SGX Architecture – Memory Translation
	Slide 81: Intel SGX Architecture – Memory Translation
	Slide 82: Intel SGX Architecture – Memory Translation
	Slide 83: Intel SGX Architecture – Memory Translation
	Slide 84: Intel SGX Architecture – Memory Translation
	Slide 85: Intel SGX Architecture – Memory Translation
	Slide 86: Intel SGX Architecture – Memory Translation
	Slide 87: Intel SGX Architecture – Memory Translation
	Slide 88: Intel SGX Architecture – Memory Translation
	Slide 89: Intel SGX Architecture – Memory Translation
	Slide 90: Intel SGX Architecture – Memory Translation
	Slide 91: Intel SGX Architecture – Memory Translation
	Slide 92: Intel SGX Architecture – Memory Translation
	Slide 93: Intel SGX Architecture – Memory Translation
	Slide 94: Intel SGX Architecture – Memory Translation
	Slide 95: Intel SGX Architecture – Memory Translation
	Slide 96: Intel SGX Architecture – Memory Translation
	Slide 97: Intel SGX Architecture – Memory Translation
	Slide 98: Intel SGX Architecture – Memory Translation
	Slide 99: Intel SGX Architecture
	Slide 100: Intel SGX Architecture – Remote Attestation
	Slide 101: Intel SGX Architecture – Remote Attestation
	Slide 102: Intel SGX Architecture – Remote Attestation
	Slide 103: Intel SGX Architecture – Remote Attestation
	Slide 104: Intel SGX Architecture – Remote Attestation
	Slide 105: Intel SGX Architecture – Remote Attestation
	Slide 106: Intel SGX Architecture – Remote Attestation
	Slide 107: Intel SGX Architecture – Other features
	Slide 108: Intel SGX Architecture – Other features
	Slide 109: That’s all for today!
	Slide 110

