
Module: Hardware & Mobile Security
Lecture: Trusted Platform Modules (TPMs)

Adam Caulfield
University of Waterloo

Spring 2025

CS 453/698: Software and Systems Security

1

Reminders & Recap
Reminders:
• A3 is due on July 11
• Send your research project proposals to Meng and me!

Recap – last time we covered:
Software supply chain security

• What is it?
• Some models:

• General software supply chain model
• Open-source software supply chain model

• Attacks
• Safeguards

• Classifications
• Examples – reproducible builds, in-toto

2

https://watssec.github.io/cs453-s25/assignments/a3/
https://watssec.github.io/cs453-s25/assignments/a3/

Today
Start: Hardware and Mobile Security

In-toto: attestation or authentication?

3

Today
Start: Hardware and Mobile Security

In-toto: attestation or authentication?
• Attestation – why?

4

Today
Start: Hardware and Mobile Security

In-toto: attestation or authentication?
• Attestation – why?
• Security requirements – Attestation Root of Trust (RoT)

• Secure storage of secret/signing keys
• Secure run-time environment
• Required to prove to end-users

How to get there?
• Secure boot?

• Performs measurement
• Only starts running if passes a validity check on the measurement

5

Secure Boot
Recall simple secure boot:

Process:
• Device is installed with a pk

• Programmed with (exec, S)

• Boot: points PC to the bootloader code

• Bootloader code performs verification using pk

• If pass, begins executing exec

6

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

R
A
M

F
L
A
S
H

Registers

exec

pk
PR
OM

S

PC
bootloaderROM

Secure Boot
Recall simple secure boot:

Process:
• Device is installed with a pk

• Programmed with (exec, S)

• Boot: points PC to the bootloader code

• Bootloader code performs verification using pk

• If pass, begins executing exec

Can these components be used to prove exec is valid to
someone else? (i.e., to get an attestation RoT?)

7

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

R
A
M

F
L
A
S
H

Registers

exec

pk
PR
OM

S

PC
bootloaderROM

Secure Boot
Recall simple secure boot:

Process:
• Device is installed with a pk
• Programmed with (exec, S)
• Boot: points PC to the bootloader code
• Bootloader code performs verification using pk
• If pass, begins executing exec

Can these components be used to prove exec is valid to
someone else? (i.e., to get an attestation RoT?)

No → requires the device to produce its own signature
• Requires secure storage of secret key

8

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

R
A
M

F
L
A
S
H

Registers

exec

pk
PR
OM

S

PC
bootloaderROM

Secure Boot
Recall simple secure boot:

So, what do we need?
• A secret key on our device

• Some way to securely store it

• Some way to securely use it

9

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

R
A
M

F
L
A
S
H

Registers

exec

pk
PR
OM

S

PC
bootloaderROM

?? sk

Secure Boot
Recall simple secure boot:

So, what do we need?
• A secret key on our device

• Some way to securely store it

• Some way to securely use it

How?

10

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

R
A
M

F
L
A
S
H

Registers

exec

pk
PR
OM

S

PC
bootloaderROM

?? sk

Getting an Attestation RoT…

Option 1:
Keep modifying the secure boot
architecture until it meets the reqs.
• Possible, but tricky (especially for higher-end

devices)

11

Getting an Attestation RoT…

Option 1:
Keep modifying the secure boot
architecture until it meets the reqs.
• Possible, but tricky (especially for higher-end

devices)

12

Option 2:
Use separate purpose-specific cryptographic co-
processor to store/compute on secrets.
• Isolated & independent from the main system

Trusted Platform Module (TPM)

Completely isolated & independent from the main
system & CPU

Getting an Attestation RoT…

Option 1:
Keep modifying the secure boot
architecture until it meets the reqs.
• Possible, but tricky (especially for higher-end

devices)

13

Option 2:
Use separate purpose-specific cryptographic co-
processor to store/compute on secrets.
• Isolated & independent from the main system

Trusted Platform Module (TPM)

Completely isolated & independent from the main
system & CPU

Computer model with TPM

14

B
U
S

C
o
n
t
r
o
l
l
e
r

CPU

R
A
M

Registers

CPU

Registers

CPU

Registers

CPU

Registers

Peripheral 1

Peripheral 2

Peripheral 3 DISK

Computer model with TPM

15

B
U
S

C
o
n
t
r
o
l
l
e
r

Secrets

TPM

CPU

R
A
M

Registers

CPU

Registers

CPU

Registers

CPU

Registers

Peripheral 1

Peripheral 2

Peripheral 3 DISK

Separate module, with
some stored secret

Computer model with TPM

16

B
U
S

C
o
n
t
r
o
l
l
e
r

Secrets

TPM

CPU

R
A
M

Registers

CPU

Registers

CPU

Registers

CPU

Registers

Peripheral 1

Peripheral 2

Peripheral 3 DISK

Separate module, with
some stored secret

Separate Interface

Computer model with TPM

17

B
U
S

C
o
n
t
r
o
l
l
e
r

Secrets

TPM

CPU

R
A
M

Registers

CPU

Registers

CPU

Registers

CPU

Registers

Peripheral 1

Peripheral 2

Peripheral 3 DISK

Separate module, with
some stored secret

Separate Interface

TPM is a passive device that
only responds to small &
well-defined requests
issued by the main systems

Computer model with TPM

18

B
U
S

C
o
n
t
r
o
l
l
e
r

Secrets

TPM

CPU

R
A
M

Registers

CPU

Registers

CPU

Registers

CPU

Registers

Peripheral 1

Peripheral 2

Peripheral 3 DISK

Separate module, with
some stored secret

Separate Interface

TPM is a passive device that
only responds to small &
well-defined requests
issued by the main systems

Secrets never leave the TPM

Trusted Platform Module (TPM)
What is TPM?

• A cryptographic co-processor

• NOT a crypto accelerator

• NOT a general-purpose processor
• Hard-coded & pre-defined functionality

19

Trusted Platform Module (TPM)
Trusted Computing Group (TCG)

• TPM was conceived by a computing industry consortium called the Trusted Computing Group

• A hardware anchor (RoT) on which secure systems could be built

• First version was standardized in 2009

20

Trusted Platform Module (TPM)

21From https://trustedcomputinggroup.org/membership/member-companies/

https://trustedcomputinggroup.org/membership/member-companies/
https://trustedcomputinggroup.org/membership/member-companies/
https://trustedcomputinggroup.org/membership/member-companies/

Trusted Platform Module (TPM)
Trusted Computing Group (TCG)

• TPM was conceived by a computing industry consortium called the Trusted Computing Group

• A hardware anchor (RoT) on which secure systems could be built

• First version was standardized in 2009

• TCG specifies a standard that TPM manufacturers should follow

22

Trusted Platform Module (TPM)
TCG TPM Releases

When TCD releases a new version of the TPM spec, it is divided into:

• Part 0: Introduction

• Part 1: Design Principles of TPM Architecture

• Part 2: Structures of the TPM

• Part 3: Commands (how to talk to the TPM)

Continuously revised to enhance its security and keep up with current needs

• TPM 1.2 (2005):
• Hashing → SHA-1 (no longer considered secure)
• Signing → RSA

• TPM 2.0 (2014)
• Hashing → SHA-256
• Signing → RSA or ECC 23

Trusted Platform Module (TPM)
TPM Functions and uses:

• Hardware random number generation

• Secure generation of cryptographic keys (RSA, ECC)

• Remote Attestation

• Binding:
• Encryption of data using a “TPM bind key”

• Sealing:
• Similar to binding
• Decryption only possible once certain TPM state has been reached

Plus anything else that one may come up with by combining these features!

24

Recall from previous lecture

Remote Attestation

25

(4) Verify response,
 decide if Prover
should be trusted

Verifier

(2) Generate a proof = authenticated
challenge-based measurement of its own
memory (via some cryptographic integrity-
ensuring function) performed by a RoT

Prover

(3) Response:

I’m running software X.
Here is a proof!

(1) Challenge:

What software are you
running?

Now assume Prover has TPM…

Remote Attestation

26

(4) Verify response,
 decide if Prover
should be trusted

Verifier

(2) Generate a proof = authenticated
challenge-based measurement of its own
memory (via some cryptographic integrity-
ensuring function) performed by a RoT

Prover

(3) Response:

I’m running software X.
Here is a proof!

(1) Challenge:

What software are you
running?

Secrets

TPM

Now assume Prover has TPM… slightly modified

(4) Verify response,
 decide if Prover
should be trusted

(2) Request TPM to report on its state using
authenticated challenge-based measurement
using securely-stored key

(3) Response:

I’m running software X.
Here is a proof!

(1) Challenge:

What software are you
running?

Remote Attestation

27

Verifier Prover

Secrets

TPM

(0) Execute and measure state of the boot chain.
Utilize TPM to securely maintain state .

Now assume Prover has TPM… slightly modified

(4) Verify response,
 decide if Prover
should be trusted

(2) Request TPM to report on its state using
authenticated challenge-based measurement
using securely-stored key

(3) Response:

I’m running software X.
Here is a proof!

(1) Challenge:

What software are you
running?

Remote Attestation

28

Verifier Prover

Secrets

TPM

(0) Execute and measure state of the boot chain.
Utilize TPM to securely maintain state .

How??

TPM Architecture

29

TPM Architecture
TPM Provides:

• A Root of Trust for Storage
• Secure TPM encryption key

• A Root of Trust for Reporting
• Secure TPM signing key (used to establish TPM’s identity)

• TPM State
• Limited internal storage
• Loading & storing keys
• Platform Configuration Registers (PCR)

30

TPM Architecture
TPM Provides:

• A Root of Trust for Storage
• Secure TPM encryption key

• A Root of Trust for Reporting
• Secure TPM signing key (used to establish TPM’s identity)

• TPM State
• Limited internal storage
• Loading & storing keys
• Platform Configuration Registers (PCR)

31

TPM Architecture
Root of Trust for Storage:

• Core question:
• How are the secrets actually kept secret?

• TCG: Can we store them all locally (i.e., internal to the TPM)?
• It depends… how many secrets do we need to keep secret?
• TCG: “hmm more than three?” → need ability to store arbitrary number of secrets

32

TPM Architecture
Root of Trust for Storage:

• Core question:
• How are the secrets actually kept secret?

• TCG: Can we store them all locally (i.e., internal to the TPM)?
• It depends… how many secrets do we need to keep secret?
• TCG: “hmm more than three?” → need ability to store arbitrary number of secrets

• TPM as a Root of Trust for Storage
• Does not store all secrets directly
• Stores one main secret used to protect other secrets in the system
• Other secrets then can be stored outside the TPM (e.g., Disk)
• Secrets stored outside are encrypted under the TPM main secret

The “root secret” helps ensure the confidentiality of other secrets in external storage
 Hence, Root of Trust 33

TPM Architecture

34

Root of Trust for Storage

TPM Architecture
Storage Root Key (SRK)
• Burned inside TPM persistent memory by manufacturer

• Never leaves the TPM

• Provides confidentiality of externally stored keys

Other new keys are generated by the TPM

35

TPM Architecture
Storage Root Key (SRK)
• Burned inside TPM persistent memory by manufacturer

• Never leaves the TPM

• Provides confidentiality of externally stored keys

Other new keys are generated by the TPM
• E.g., RSA keys: (PK, SK) pairs
• Stored outside the TPM
• How? → encrypt the private half (SK)

[EncSRK(SK1), PK1] → blob1

[EncSRK(SK2), PK2] → blob2

…
[EncSRK(SKN), PKN] → blobN

36

TPM Architecture
Storage Root Key (SRK)
• Burned inside TPM persistent memory by manufacturer

• Never leaves the TPM

• Provides confidentiality of externally stored keys

Other new keys are generated by the TPM
• E.g., RSA keys: (PK, SK) pairs
• Stored outside the TPM
• How? → encrypt the private half (SK)

[EncSRK(SK1), PK1] → blob1

[EncSRK(SK2), PK2] → blob2

…
[EncSRK(SKN), PKN] → blobN

37

Blobs can be stored anywhere
e.g., disk, another machine, cloud

TPM Architecture

38

B
U
S

C
o
n
t
r
o
l
l
e
r

SRK

CPU

R
A
M

Registers

CPU

Registers

CPU

Registers

CPU

Registers

Peripheral 1

Peripheral 2

Peripheral 3 DISK

TPM

blob1 = EncSRK(SK1), PK1
blob2 = EncSRK(SK2), PK2

…
blobN = EncSRK(SKN), PKN

TPM Architecture

39

Key Generation

TPM Architecture
Key Generation

Two basic key generation operations:

• TPM_CreateWrapKey:
• (1) Creates a key pair (2) ties it to a system state
• General purpose

• TPM_MakeIdentity
• Creates an “Attestation Identity” key pair
• Used for signing

40

TPM Architecture
Key Generation

Two basic key generation operations:

• TPM_CreateWrapKey:
• (1) Creates a key pair (2) ties it to a system state
• General purpose

• TPM_MakeIdentity
• Creates an “Attestation Identity” key pair
• Used for signing

41

TPM Architecture

42

Key Generation

TPM_CreateWrapKey()

TPM Architecture

43

Key Generation

(SK1, PK1)

TPM Architecture

44

Key Generation

(SK1, PK1)

Wrap key blob:
PK1

EncSRK(SK1)

TPM Architecture
Key Generation

Two basic key generation operations:

• TPM_CreateWrapKey:
• (1) Creates a key pair (2) ties it to a system state
• General purpose

• TPM_MakeIdentity
• Creates an “Attestation Identity” key pair
• Used for signing

45

Wrap key generation:
Optional authorization parameters
• Require a password to use a key
• Require a system state to use the key
• More coming up…

TPM Architecture
Key Generation

Two basic key generation operations:

• TPM_CreateWrapKey:
• (1) Creates a key pair (2) ties it to a system state
• General purpose

• TPM_MakeIdentity
• Creates an “Attestation Identity” key pair
• Used for signing

46

Wrap key generation:
Optional authorization parameters
• Require a password to use a key
• Require a system state to use the key
• More coming up…

Similar to wrap keys, but…
• Used for identity
• All new attestation identity key (AIK) pairs

are signed
• Signed with the TPM’s Endorsement Key
• Certification: proves PK was issued by

the TPM → hence, identity

TPM Architecture

47

Key Generation

TPM_MakeIdentity()

TPM Architecture

48

Key Generation

(SK1, PK1)

TPM Architecture

49

Key Generation

(SK1, PK1)

AIK blob:
PK1

EncSRK(SK1)

TPM Architecture

50

Key Generation

PK1

AIK blob:
PK1

EncSRK(SK1)
cert = SignEK(PK1)

TPM Architecture
Important takeaways…

Storage Root Key (SRK):

1. SRK is securely stored in the TPM permanently

2. Never leaves the TPM

3. Used to encrypt the private half of any new key pair

 → Only the same TPM that generates a key pair can later decrypt it (Secrecy)

51

TPM Architecture
Important takeaways…

Storage Root Key (SRK):

1. SRK is securely stored in the TPM permanently

2. Never leaves the TPM

3. Used to encrypt the private half of any new key pair

 → Only the same TPM that generates a key pair can later decrypt it (Secrecy)

Endorsement Key (EK):

1. EK is securely stored in the TPM permanently

2. Never leaves the TPM

3. Used to sign the public half of new AIK pairs

 → Anyone can verify that a key pair was generated by a particular TPM (Authentication)

52

TPM Architecture
TPM Provides:

• A Root of Trust for Storage
• Secure TPM encryption key

• A Root of Trust for Reporting
• Secure TPM signing key (used to establish TPM’s identity)

• TPM State
• Limited internal storage
• Loading & storing keys
• Platform Configuration Registers (PCR)

53

TPM Architecture
Root of Trust for Reporting

• Core question:
• Is this system in a good state?

• Answer requires:
• Looking at the system state → a Root of Trust for Measurement
• Proving authenticity of the state → a Root of Trust for Reporting

• What is TPM?
 A Root of Trust for Reporting (RTR)

 NOT A Root of Trust for Measurement (RTM)

• Recall: TPM is passive → responds to requests, does not proactively check anything
54

AIK blob:
PK1

EncSRK(SK1)
cert = SignEK(PK1)

TPM Architecture
Root of Trust for Reporting

How to know that a report/signature was issued by a trusted TPM?

55

AIK blob:
PK1

EncSRK(SK1)
cert = SignEK(PK1)

TPM Architecture
Root of Trust for Reporting

How to know that a report/signature was issued by a trusted TPM?

 It must come with a signature that can be verified using an AIK public key

56

AIK blob:
PK1

EncSRK(SK1)
cert = SignEK(PK1)

TPM Architecture
Root of Trust for Reporting

How to know that a report/signature was issued by a trusted TPM?

 It must come with a signature that can be verified using an AIK public key

How to know that this public key was indeed generated by a trusted TPM?

57

AIK blob:
PK1

EncSRK(SK1)
cert = SignEK(PK1)

TPM Architecture
Root of Trust for Reporting

How to know that a report/signature was issued by a trusted TPM?

 It must come with a signature that can be verified using an AIK public key

How to know that this public key was indeed generated by a trusted TPM?

 Verify the cert: a proof signed using the TPM’s endorsement key (EK)

58

AIK blob:
PK1

EncSRK(SK1)
cert = SignEK(PK1)

TPM Architecture
Root of Trust for Reporting

How to know that a report/signature was issued by a trusted TPM?

 It must come with a signature that can be verified using an AIK public key

How to know that this public key was indeed generated by a trusted TPM?

 Verify the cert: a proof signed using the TPM’s endorsement key (EK)

How to know which public key should be used to verify the cert?

59

AIK blob:
PK1

EncSRK(SK1)
cert = SignEK(PK1)

TPM Architecture
Root of Trust for Reporting

How to know that a report/signature was issued by a trusted TPM?

 It must come with a signature that can be verified using an AIK public key

How to know that this public key was indeed generated by a trusted TPM?

 Verify the cert: a proof signed using the TPM’s endorsement key (EK)

How to know which public key should be used to verify the cert?

 Verify the TPM endorsement key certificate

60

AIK blob:
PK1

EncSRK(SK1)
cert = SignEK(PK1)

TPM Architecture
EK Certificate

Modern TPMs store their own certificate metadata and public key for convenience

Public part of the EK can be retrieved with a command

Private part of the EK can never be retrieved

Available certificate metadata can also be retrieved

61

TPM Architecture
TPM Provides:

• A Root of Trust for Storage
• Secure TPM encryption key

• A Root of Trust for Reporting
• Secure TPM signing key (used to establish TPM’s identity)

• TPM State
• Limited internal storage
• Loading & storing keys
• Platform Configuration Registers (PCR)

62

TPM Architecture
How to use generate keys?

TPM_LoadKey

• Input – a key blob

• Loads a key blob into the TPM

• Internally → decrypts the private half using the parent key (e.g., the SRK)

• Stores the decrypted private half in TPM’s versatile memory

• Returns a key handle → identifier for the loaded key

63

TPM Architecture

64

Key Generation

TPM_LoadKey(blob1)

TPM Architecture

65

Key Generation

TPM Architecture

66

Key Generation

handle1

TPM Architecture

67

Key Generation

handle1

Once key is loaded, the handle can be given as input to other TPM commands
Handle allows external operations without ever directly seeing keys

TPM Architecture
Using loaded keys

• Once a key is loaded, TPM can perform typical cryptographic operations like a black-box

• One very important feature makes these operations special…

68

TPM Architecture
Using loaded keys

• Once a key is loaded, TPM can perform typical cryptographic operations like a black-box

• One very important feature makes these operations special…

• There usage can be conditioned to the current system state

• How to record state?

Platform Configuration Registers

69

TPM Architecture

70

Key Generation

TPM Architecture
Platform Configuration Registers (PCRs)

Implement an append-only secure state chain

• PCR Size: size of TPM Hash Algorithm

• Modern TPMs have 24 PCRs → old ones have 16
• Labeled: PCR-0, PCR-1, …, PCR-23

• Typically used to store system states (though other uses are possible)

71

TPM Architecture
Platform Configuration Registers (PCRs)

Key Features:

• Always reset to a default value at boot (e.g., zero)

• Can never be freely overwritten

• Highly-constrained & well-defined behavior:

72

Only modifiable using extend operation:

Extend(PCR-id, <input>)

TPM Architecture
Platform Configuration Registers (PCRs)

extend(PCR-id, <input>)
• PCR-id = H(PCR-id || <input>)

• With TPM’s hash function H

73

TPM Architecture
Platform Configuration Registers (PCRs)

extend(PCR-id, <input>)
• PCR-id = H(PCR-id || <input>)

• With TPM’s hash function H

Example:

Boot (power on): PCR-0 = 0x00…0

extend(PCR-0,”adam”) PCR-0 = H(0x00…0 || “adam”) = 0xF3…7

extend(PCR-0,”cs453”) PCR-0 = H(0xF3…7 || “cs453”) = 0xAE…2

extend(PCR-0,”TPM”) PCR-0 = H(0xAE…2 || “TPM”) = 0xD4…C 74

TPM Architecture
Measuring Boot State into PCRs

75

TPM

PCR-3 = 0x00..0

TPM Architecture
Measuring Boot State into PCRs

76

TPM

PCR-3 = 0xB4..9

Before loading next module, extend it into PCR

extend(PCR-3, MBR)

TPM Architecture
Measuring Boot State into PCRs

77

TPM

PCR-3 = 0xC6..7

Before loading next module, extend it into PCR

extend(PCR-3, GRUB)

TPM Architecture
Measuring Boot State into PCRs

78

TPM

PCR-3 = 0xAB..1

Before loading next module, extend it into PCR

extend(PCR-3, linux)

TPM Architecture
Measuring Boot State into PCRs

79

TPM

PCR-3 = 0x56..E

Before loading next module, extend it into PCR

extend(PCR-3, init)

TPM Architecture
Measuring Boot State into PCRs

80

TPM

PCR-3 = 0x8D..C

Before loading next module, extend it into PCR

extend(PCR-3,
“done”)

If anything different is loaded, the final
PCR-3 value will be different than

expected (0x8D..C)

TPM-based Remote Attestation:
How can this be used for Remote Attestation?

1. Provide a “quote” of challenge || PCR-of-interest

2. Signing the challenge with PCR-bound key

81

TPM-based RA (v1)
TPM Quote: quote(nonce, PCRs (selection), AIK_handle)
• TPM uses AIK to sign selected PCRs and a nonce → returns a signature

• Nonce externally provided input (e.g., RA challenge)

82

Verifier Prover

TPM

TPM-based RA (v1)
TPM Quote: quote(nonce, PCRs (selection), AIK_handle)
• TPM uses AIK to sign selected PCRs and a nonce → returns a signature

• Nonce externally provided input (e.g., RA challenge)

83

Verifier Prover

TPM

(0) Execute and measure state of the boot chain
into a PCR. Creates and certifies an AIK key

PCR-3 = 0x8D..C

TPM-based RA (v1)
TPM Quote: quote(nonce, PCRs (selection), AIK_handle)
• TPM uses AIK to sign selected PCRs and a nonce → returns a signature

• Nonce externally provided input (e.g., RA challenge)

84

(1) Challenge:

chal, AIK_handle

Verifier Prover

TPM

(0) Execute and measure state of the boot chain
into a PCR. Creates and certifies an AIK key

PCR-3 = 0x8D..C

TPM-based RA (v1)
TPM Quote: quote(nonce, PCRs (selection), AIK_handle)
• TPM uses AIK to sign selected PCRs and a nonce → returns a signature

• Nonce externally provided input (e.g., RA challenge)

85

(2) Request TPM to load AIK and compute
quote(chal, PCR-3, signed AIK_handle)

(3) Response:

Sends quote

(1) Challenge:

chal, AIK_handle

Verifier Prover

TPM

(0) Execute and measure state of the boot chain
into a PCR. Creates and certifies an AIK key

PCR-3 = 0x8D..C

TPM-based RA (v1)
TPM Quote: quote(nonce, PCRs (selection), AIK_handle)
• TPM uses AIK to sign selected PCRs and a nonce → returns a signature

• Nonce externally provided input (e.g., RA challenge)

86

(4) Verify quote

(2) Request TPM to load AIK and compute
quote(chal, PCR-3, signed AIK_handle)

(3) Response:

Sends quote

(1) Challenge:

chal, AIK_handle

Verifier Prover

TPM

(0) Execute and measure state of the boot chain
into a PCR. Creates and certifies an AIK key

PCR-3 = 0x8D..C

TPM-based RA (v1)
Verification chain

1. Check if the reported PCR(s) value(s) match the expected system state

2. Check the signature on the reported PCRs using the signed AIK public key

3. Check if AIK was signed by EK (using the public EK)

4. Check if public-EK is certified by the TPM manufacturer

87

TPM-based RA (v2)
Without quote: “seal based attestation”

• Use wrap key → recall, use can be conditioned on a PCR state.

88

Verifier Prover

TPM

TPM-based RA (v2)
Without quote: “seal based attestation”

• Use wrap key → recall, use can be conditioned on a PCR state.

89

Verifier Prover
TPM

PCR-3 = 0x8D..C

TPM-based RA (v2)
Without quote: “seal based attestation”

• Use wrap key → recall, use can be conditioned on a PCR state.

90

Verifier Prover
TPM

PCR-3 = 0x8D..C

AIK blob:
PK2

EncSRK(SK2)
cert = SignEK(PK2)

Wrap blob:
PK1

EncSRK(SK1)
cert = SignSK2(PK1)

(0) Create wrap key(condition : PCR-3 = 0x8D..C)
 and use an AIK to certify the wrap key

TPM-based RA (v2)
Without quote: “seal based attestation”

• Use wrap key → recall, use can be conditioned on a PCR state.

91

Verifier Prover
TPM

PCR-3 = 0x8D..C

AIK blob:
PK2

EncSRK(SK2)
cert = SignEK(PK2)

Wrap blob:
PK1

EncSRK(SK1)
cert = SignSK2(PK1)

(0) Create wrap key(condition : PCR-3 = 0x8D..C)
 and use an AIK to certify the wrap key

(1) Challenge:

chal, wrap_key_handle

TPM-based RA (v2)
Without quote: “seal based attestation”

• Use wrap key → recall, use can be conditioned on a PCR state.

92

Verifier Prover
TPM

PCR-3 = 0x8D..C

AIK blob:
PK2

EncSRK(SK2)
cert = SignEK(PK2)

Wrap blob:
PK1

EncSRK(SK1)
cert = SignSK2(PK1)

(0) Create wrap key(condition : PCR-3 = 0x8D..C)
 and use an AIK to certify the wrap key

(1) Challenge:

chal, wrap_key_handle

(2) Request TPM to load AIK and compute:
 sign(chal, certified wrap_key_handle)

TPM-based RA (v2)
Without quote: “seal based attestation”

• Use wrap key → recall, use can be conditioned on a PCR state.

93

(2) Request TPM to load AIK and compute:
 sign(chal, certified wrap_key_handle)

(3) Response:

Sends signature

(1) Challenge:

chal, wrap_key_handle

Verifier Prover
TPM

(0) Create wrap key(condition : PCR-3 = 0x8D..C)
 and use an AIK to certify the wrap key

PCR-3 = 0x8D..C

AIK blob:
PK2

EncSRK(SK2)
cert = SignEK(PK2)

Wrap blob:
PK1

EncSRK(SK1)
cert = SignSK2(PK1)

TPM-based RA (v2)
Without quote: “seal based attestation”

• Use wrap key → recall, use can be conditioned on a PCR state.

94

(2) Request TPM to load AIK and compute:
 sign(chal, certified wrap_key_handle)

(3) Response:

Sends signature

(1) Challenge:

chal, wrap_key_handle

Verifier Prover
TPM

(0) Create wrap key(condition : PCR-3 = 0x8D..C)
 and use an AIK to certify the wrap key

PCR-3 = 0x8D..C

(4) Verify signature

AIK blob:
PK2

EncSRK(SK2)
cert = SignEK(PK2)

Wrap blob:
PK1

EncSRK(SK1)
cert = SignSK2(PK1)

TPM-based RA (v2)
Verification chain

1. Check if the reported PCR(s) value(s) match the expected system state

2. Check the signature on the reported PCRs using the certified wrap key

3. Check if wrap key was signed by known AIK (using the public AIK)

4. Check if AIK was signed by EK (using the public EK)

5. Check if public-EK is certified by the TPM manufacturer

95

TPM operations
Similar conditional operation:

TPM_Seal
• Encrypts data, conditions decryption on PCR state

96

TPM Applications
Many applications can benefit from TPM
• Can be used to implement secure boot (though not required)

• Other applications:

97

TPM Applications
Many applications can benefit from TPM
• Can be used to implement secure boot (though not required)

• Other applications:

98

TPM Applications
Many applications can benefit from TPM
• Can be used to implement secure boot (though not required)

• Other applications:

99

Concluding thoughts
Nice characteristics of TPM:
• Logically separated from CPU and main system

• Provides core building block cryptographic operations

• Provides state-aware operations

Limitations:
• Not programmable

• Do not provide a run-time environment: protects data, but not the host itself

• Passive: no availability guarantees if the host is compromised

100

That’s all for today!
Coming up….
• Alternative designs that can address limitations of TPM
• Trusted Execution Environments

• User-space TEE in Servers → Intel SGX
• System-wide TEE in Mobile → ARM TrustZone

Reminders:
• A3 is due on July 11
• Research project proposals

Resources:
• TPM specifications: 1.2, 2.0
• More TPM details (Microsoft)
• Simulating TPM 101

https://watssec.github.io/cs453-s25/assignments/a3/
https://watssec.github.io/cs453-s25/assignments/a3/
https://trustedcomputinggroup.org/resource/tpm-main-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://learn.microsoft.com/en-us/windows/security/hardware-security/tpm/trusted-platform-module-overview
https://francislampayan.medium.com/how-to-setup-tpm-simulator-in-ubuntu-20-04-25ec673b88dc
https://francislampayan.medium.com/how-to-setup-tpm-simulator-in-ubuntu-20-04-25ec673b88dc

102

	Default Section
	Slide 1: Module: Hardware & Mobile Security
	Slide 2: Reminders & Recap
	Slide 3: Today
	Slide 4: Today
	Slide 5: Today
	Slide 6: Secure Boot
	Slide 7: Secure Boot
	Slide 8: Secure Boot
	Slide 9: Secure Boot
	Slide 10: Secure Boot
	Slide 11: Getting an Attestation RoT…
	Slide 12: Getting an Attestation RoT…
	Slide 13: Getting an Attestation RoT…
	Slide 14: Computer model with TPM
	Slide 15: Computer model with TPM
	Slide 16: Computer model with TPM
	Slide 17: Computer model with TPM
	Slide 18: Computer model with TPM
	Slide 19: Trusted Platform Module (TPM)
	Slide 20: Trusted Platform Module (TPM)
	Slide 21: Trusted Platform Module (TPM)
	Slide 22: Trusted Platform Module (TPM)
	Slide 23: Trusted Platform Module (TPM)
	Slide 24: Trusted Platform Module (TPM)
	Slide 25: Remote Attestation
	Slide 26: Remote Attestation
	Slide 27: Remote Attestation
	Slide 28: Remote Attestation
	Slide 29: TPM Architecture
	Slide 30: TPM Architecture
	Slide 31: TPM Architecture
	Slide 32: TPM Architecture
	Slide 33: TPM Architecture
	Slide 34: TPM Architecture
	Slide 35: TPM Architecture
	Slide 36: TPM Architecture
	Slide 37: TPM Architecture
	Slide 38: TPM Architecture
	Slide 39: TPM Architecture
	Slide 40: TPM Architecture
	Slide 41: TPM Architecture
	Slide 42: TPM Architecture
	Slide 43: TPM Architecture
	Slide 44: TPM Architecture
	Slide 45: TPM Architecture
	Slide 46: TPM Architecture
	Slide 47: TPM Architecture
	Slide 48: TPM Architecture
	Slide 49: TPM Architecture
	Slide 50: TPM Architecture
	Slide 51: TPM Architecture
	Slide 52: TPM Architecture
	Slide 53: TPM Architecture
	Slide 54: TPM Architecture
	Slide 55: TPM Architecture
	Slide 56: TPM Architecture
	Slide 57: TPM Architecture
	Slide 58: TPM Architecture
	Slide 59: TPM Architecture
	Slide 60: TPM Architecture
	Slide 61: TPM Architecture
	Slide 62: TPM Architecture
	Slide 63: TPM Architecture
	Slide 64: TPM Architecture
	Slide 65: TPM Architecture
	Slide 66: TPM Architecture
	Slide 67: TPM Architecture
	Slide 68: TPM Architecture
	Slide 69: TPM Architecture
	Slide 70: TPM Architecture
	Slide 71: TPM Architecture
	Slide 72: TPM Architecture
	Slide 73: TPM Architecture
	Slide 74: TPM Architecture
	Slide 75: TPM Architecture
	Slide 76: TPM Architecture
	Slide 77: TPM Architecture
	Slide 78: TPM Architecture
	Slide 79: TPM Architecture
	Slide 80: TPM Architecture
	Slide 81: TPM-based Remote Attestation:
	Slide 82: TPM-based RA (v1)
	Slide 83: TPM-based RA (v1)
	Slide 84: TPM-based RA (v1)
	Slide 85: TPM-based RA (v1)
	Slide 86: TPM-based RA (v1)
	Slide 87: TPM-based RA (v1)
	Slide 88: TPM-based RA (v2)
	Slide 89: TPM-based RA (v2)
	Slide 90: TPM-based RA (v2)
	Slide 91: TPM-based RA (v2)
	Slide 92: TPM-based RA (v2)
	Slide 93: TPM-based RA (v2)
	Slide 94: TPM-based RA (v2)
	Slide 95: TPM-based RA (v2)
	Slide 96: TPM operations
	Slide 97: TPM Applications
	Slide 98: TPM Applications
	Slide 99: TPM Applications
	Slide 100: Concluding thoughts
	Slide 101: That’s all for today!
	Slide 102

