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Reminders & Recap
Reminders:
• A4 is released

• Due July 25th

• Send your research project proposals to Meng and me!

Recap – last time we covered:

Intro to Trusted Execution Environments (TEE)
• Separate, isolated, and minimal execution environmet
• Enabled as a part of the CPU arch. itself (not a separate external module)

Intel SGX
• User-space TEE → enclaves
• Architecture details → Isolation, life cycle, address translation, attestation
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Today
Continue: Hardware and Mobile Security 

Different TEE architecture and real-world use case

ARM TrustZone
• System-level or “split world” architecture
• Overview
• Architectural details

Android OS
• How it uses TrustZone (particular focus on KeyStore)
• Other security features
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A few family of CPUs provided by ARM

ARM Processors
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ARM Cortex-A family

• Application processors

• Supports OS and high-performance apps

• This is the CPU in smart phones, smart tv

ARM Cortex-R family

• Real-time processors with high-

performance and reliability

• Support real-time processing and 

mission-critical control

ARM Cortex-M family

• Microcontrollers

• Cost-sensitive, SoC, low-power 

processing



ARM Processors

A few family of CPUs provided by ARM
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ARM Processors
A few family of CPUs provided by ARM

ARM Cortex-A family
• Application processors
• Support OS and high-performance applications
• This is the CPU in smart phones, smart tv, etc.

ARM Cortex-R family
• Real-time processors with high-performance and reliability
• Support real-time processing and mission-critical control

ARM Cortex-M family
• Microcontrollers
• Cost-sensitive, SoC, low-power processing
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ARM TrustZone Overview

What is TrustZone?

ARM Processors’ TEE

• Splits the system into two worlds

• From ARM:

• “The security of the system is achieved by partitioning all (…) hardware and 

software resources so that they exist in one of two worlds – the Secure world for 

the security subsystem, and the Normal world for everything else.”
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ARM TrustZone Overview
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Some visualizations….

Process 1

Rich OS (e.g., Linux)

Process 2

Baseline Runtime System

CPU
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Some visualizations….

Process 1

Rich OS (e.g., Linux)

Process 2

Runtime System with TPM

CPUTPM



ARM TrustZone Overview
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Some visualizations….

Process 1

Rich OS (e.g., Linux)

Process 2

Runtime System with SGX

SGX-capable CPU

SGX
Enclave

SGX
Enclave
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Some visualizations….

Process 1
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Some visualizations….

Process 1

Rich OS (e.g., Linux)

Process 2

Runtime System with TrustZone?

TrustZone-capable CPU

Split everything 
between two 

worlds
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Some visualizations….

Process 1

Rich OS (e.g., Linux)

Process 2

Runtime System with TrustZone?

TrustZone-capable CPU

Normal World
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Some visualizations….

Process 1

Rich OS (e.g., Linux)

Process 2

TrustZone-capable CPU

Trusted App 1

Small Trusted OS

Trusted App 2

Normal World
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Secure World



ARM TrustZone Overview

TrustZone’s Guarantee: 

Even if the Normal World is fully compromised, the Secure World 

remains safe, confidential, isolated, etc.
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ARM TrustZone Overview
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Some visualizations….

Process 1 Process 2

TrustZone-capable CPU

Trusted App 1 Trusted App 2

Normal World
Runtime System with TrustZone?

Secure World

What happens now?

Small Trusted OSRich OS (e.g., Linux)



ARM TrustZone Overview
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Some visualizations….

Process 1 Process 2

TrustZone-capable CPU

Trusted App 1 Trusted App 2
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ARM TrustZone Overview
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Some visualizations….
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Some visualizations….

Process 1 Process 2

TrustZone-capable CPU
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But beware!!!
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ARM TrustZone Overview

Topics:

• Isolation in TrustZone

• Secure Monitor Calls (SMC) – Invocation of Secure World code

• Android
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Topics:

• Isolation in TrustZone

• Secure Monitor Calls (SMC) – Invocation of Secure World code

• Android
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ARM TrustZone – Isolation 

Main Design Guidelines

• Store and manipulate security-critical info within the Secure World

• Passwords, biometrics, private data, etc.

• Keep the code inside the Secure World minimal → small TCB

• Non-security tasks stay out in the Normal World

• E.g., network stack, device drivers, UI implementation, etc.

• Normal World Apps make requests to Secure World apps via well-defined APIs

• E.g., request decryption, check this biometric input, etc…
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ARM TrustZone – Isolation 

Main Design Guidelines

• Store and manipulate security-critical info within the Secure World

• Passwords, biometrics, private data, etc.

• Keep the code inside the Secure World minimal → small TCB

• Non-security tasks stay out in the Normal World
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ARM TrustZone – Isolation
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CPU MMU

Memory

Virt Addr

BUS
Phy Addr

Virtual 
Prefix

Physical 
Prefix

00001 24E78

00002 045E2

00003 AEC78

00004 A2345

00005 AF123

Memory Translation Revisited…
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CPU MMU

Memory

Virt Addr
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ARM TrustZone – Isolation 
Similar idea → CPU is now involved in the memory translation

TrustZone approach:

• Two worlds → two page tables

• Both are active in an MMU at a given time

• Normal world page table → managed by the Rich OS

• Secure world page table → managed by the Trusted OS

• One additional bit in the CPU → tells MMU which table to load 

• Non-Secure (NS) bit: 

• NS = 1 → currently in Normal World, Secure World access is blocked

• NS = 0 → currently in Secure World, Secure World access is allowed

• Referred to as “33rd bit”
35
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ARM TrustZone – Isolation 
Similar idea → CPU is now involved in the memory translation

TrustZone approach (part 1):

• Two worlds → two page tables

• Both are active in an MMU at a given time

• Normal world page table → managed by the Rich OS

• Secure world page table → managed by the Trusted OS

• One additional bit in the CPU → tells MMU which table to load 

• Non-Secure (NS) bit: 

• NS = 1 → currently in Normal World, Secure World access is blocked

• NS = 0 → currently in Secure World, Secure World access is allowed

• Referred to as “33rd bit”
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ARM TrustZone – Isolation 
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CPU MMU
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Phy Addr
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00003 AEC78

00004 12345

The details…
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CPU MMU
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00004 12345

NS Bit

Now, the CPU also passes the NS bit to the MMU
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CPU MMU

Memory

Virt Addr

BUS
Phy Addr

Virtual 
Prefix

Physical 
Prefix

00001 24E78

00002 045E2

00003 AEC78

00004 12345

NS Bit

And the MMU has two page tables. 
NS bit tells MMU which to use
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00002 38E21

00003 FFF8F

00004 CC345

NS == 1 NS == 0
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ARM TrustZone – Isolation 

TrustZone approach (continued..)

• Physical Memory Partitioning in addition to the modified MMU!

• TrustZone enables configuration of specific physical memory regions as secure or 

non-secure, such that applications can only access memory assigned to their world

• How?

• Two hardware controllers:

• TrustZone Address Space Controller (TZASC)  → on chip memory (SoC) and DRAM

• TrustZone Memory Adapter (TZMA)  →  off-chip memory (e.g., external peripherals SRAM)

• TZASC and TZMA have the same function applied to different resources
44
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45

CPU MMU

Memory

Virt Addr

BUS
Phy Addr

Virtual 
Prefix

Physical 
Prefix

00001 24E78

00002 045E2

00003 AEC78

00004 12345

NS Bit

Where are the TZASC/TZMA?

Virtual 
Prefix

Physical 
Prefix

00001 567FE

00002 38E21

00003 FFF8F

00004 CC345

NS == 1 NS == 0
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CPU MMU
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TZASC/TZMA allows / drops the access based on both.

BUS



ARM TrustZone – Isolation 
TrustZone-A MMU + TZASC/TZMA

Together provide isolation in TrustZone

TZASC/TZMA:

Implement physical isolation between the worlds

• Isolate physical memory, peripherals, and hardware resources

• Provides system-level isolation

MMU:

• Virtual isolation between processes running in each world

• Provides process-level isolation
51



ARM TrustZone – Isolation 
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Some visualizations….
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TrustZone-capable CPU
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ARM TrustZone – Isolation 

Two key questions:

• Who configures the TZASC/TMA table?

• Secure World code:  first configuration after boot! It is more privileged than Normal World

• Secure world executes first and configures TZMA/TZASC before launching the normal world and rich OS.

• Security of TrustZone requires TrustZone-aware Secure boot!

• Who controls the NS bit value?

• The CPU in hardware

• From normal world, NS bit can only be changed (1 → 0) by issuing a Security Monitor Call (SMC)

• SMC atomically gives control to Secure World and sets NS=0

• SMC jumps to Security Monitor that performs context switch between the worlds

• The NS bit is set back to NS=1 before returning to Normal World
61
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ARM TrustZone – Isolation 

Security Monitor and SMC:

Switching between worlds requires a security monitor call (SMC)

The Security Monitor is part of the Secure World’s TCB
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ARM TrustZone – Isolation 

Caching in TrustZone

The problem: the CPU, and consequently the cache, must be securely shared between worlds

The TZMA/TZASC split physical memory, but not the cache

So without any additional measures, the following is a possibility:

1.  Secure World is running

2.  Secure World transfers context back to the Normal World

3.  Normal World reads the same cached address used by Secure World

4.  Data leaked! → Isolation is broken!
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Caching in TrustZone

The problem: the CPU, and consequently the cache, must be securely shared between worlds

The TZMA/TZASC split physical memory, but not the cache

So without any additional measures, the following is a possibility:

1.  Secure World is running

2.  Secure World transfers context back to the Normal World

3.  Normal World reads the same cached address used by Secure World

4.  Data leaked! → Isolation is broken!
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Caching in TrustZone

How to handle this problem?

Naïve solution:  Remove the cache  =>  secure, but extremely slow.

Alternative: Always flush the cache when switching worlds =>  secure, but still pretty slow.

TrustZone’s solution:

Include the NS bit in the cache look-up  =>  no need to flush the cache!

• Allows for fast world switching

• Cached data may be kept across successive switches
67



ARM TrustZone – Isolation 

Caching in TrustZone

How to handle this problem?

Naïve solution:  Remove the cache  =>  secure, but extremely slow.

Alternative: Always flush the cache when switching worlds =>  secure, but still pretty slow.

TrustZone’s solution:

Include the NS bit in the cache look-up  =>  no need to flush the cache!

• Allows for fast world switching

• Cached data may be kept across successive switches
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Caching in TrustZone

69
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Caching in TrustZone
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Caching in TrustZone
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Caching in TrustZone
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Caching in TrustZone
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TZ Cache

NS-bit can be seen as part of the virtual address
Even for caching purposes….

Hence the “33rd bit” nickname
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Caching in TrustZone
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NS-bit can be seen as part of the virtual address
Even for caching purposes….

Hence the “33rd bit” nickname

Example:
NS == 1; 0x00001CFB  →  Cache hit in the Normal World
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Caching in TrustZone
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NS-bit can be seen as part of the virtual address
Even for caching purposes….

Hence the “33rd bit” nickname

Example:
NS == 0; 0x00004123  →  Cache hit in the Secure World
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Caching in TrustZone
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Hence the “33rd bit” nickname

Question: Can the Normal World ever cause a cache hit 
for data cached by the Secure World?
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Caching in TrustZone
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0x00001CFB

0

NS == 0;
0x00002CCA

42

NS == 1;
0x00003F12

3

NS == 1;
0x00004123

-512345

TZ Cache

NS-bit can be seen as part of the virtual address
Even for caching purposes….

Hence the “33rd bit” nickname

Question: Can the Normal World ever cause a cache hit 
for data cached by the Secure World?

Normal World can never cause a cache hit for data 
cached by the Secure World execution.
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Caching in TrustZone

Also, the MMU has a cache:

• Called the TLB: Translation Lookaside Buffer

• Same principle for TrustZone’s CPU cache
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Summary of Isolation in TrustZone:

In main memory:

• Physical isolation implemented by TZMA/TZASC based on NS-bit

Within CPU cache and TLB:

• Propagate NS-bit through every virtual address look-up

• NS-bit is “33rd bit”

Reminder:

• NS bit value is controlled by CPU hardware. Only way to set it to 0 is by calling SMC, which also gives 

control to TrustZone’s trusted Security Monitor
79



ARM TrustZone Overview

Topics:

• Isolation in TrustZone

• Secure Monitor Calls (SMC) – Invocation of Secure World code

• Android

80



ARM TrustZone – SMC  

Revisiting the system flow:

Controlled enter and exit from the Secure World
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Revisiting the system flow:

Controlled enter and exit from the Secure World

82
The moment the CPU Flips the NS-bit



ARM TrustZone – SMC  

SMC Instruction – Calling Convention

• A function identifier (32-bits) is passed using CPU register (R0)

• Can be used to tell the security monitor which Trusted App is the destination of this call

• SMC Arguments are passed in registers R1-R7

• Inputs destined to the secure world

• Results are also returned to normal world using registers R0-R7

• Convention: not enforced by hardware anywhere

• It is up to the Security Monitor to define its own behavior

• Must then be followed/implemented by the SMC caller
83



ARM TrustZone – SMC  

SMC Instruction – Calling Convention

• A function identifier (32-bits) is passed using CPU register (R0)

• Can be used to tell the security monitor which Trusted App is the destination of this call

• SMC Arguments are passed in registers R1-R7

• Inputs destined to the secure world

• Results are also returned to normal world using registers R0-R7

• Convention: not enforced by hardware anywhere

• It is up to the Security Monitor to define its own behavior

• Must then be followed/implemented by the SMC caller
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SMC Instruction – Calling Convention

• A function identifier (32-bits) is passed using CPU register (R0)

• Can be used to tell the security monitor which Trusted App is the destination of this call

• SMC Arguments are passed in registers R1-R7

• Inputs destined to the secure world

• Results are also returned to normal world using registers R0-R7

• Convention: not enforced by hardware anywhere

• It is up to the Security Monitor to define its own behavior

• Must then be followed/implemented by the SMC caller
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SMC Instruction – Calling Convention

• A function identifier (32-bits) is passed using CPU register (R0)

• Can be used to tell the security monitor which Trusted App is the destination of this call

• SMC Arguments are passed in registers R1-R7

• Inputs destined to the secure world

• Results are also returned to normal world using registers R0-R7

• Convention: not enforced by hardware anywhere

• It is up to the Security Monitor to define its own behavior

• Must then be followed/implemented by the SMC caller
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ARM TrustZone – Architecture  

The whole beast:
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The whole beast:

88

Some cryptographic 
primitives outside CPU 
but in SoC

(keep in mind….)



ARM TrustZone – Architecture  

Important reminders about TrustZone’s design:

• Secure boot must guarantee that the Secure World runs first

• After Secure World completes secure boot → “ACTIVE”

• Availability

• Boots first!

• Also, resources assigned to secure world have priority (e.g., interrupts via TrustZone’s GIC)

• Different from TPM and SGX → Has an “active” characteristic
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ARM TrustZone Overview

Topics:

• Isolation in TrustZone

• Secure Monitor Calls (SMC) – Invocation of Secure World code

• Android
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ARM TrustZone – Android 

Provides runtime environment built atop TrustZone

• Android OS & Apps → in the normal world

• Trusted OS  & Trusted Apps → in the secure world

Features of interest:

• Key store
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ARM TrustZone – Android 

Android Key Store:

Protects key material from unauthorized use in two ways. First it .. Prevents the 

extraction of keys from application processes and from the Android device, and Second 

it makes apps specify the authorized use of their keys within the device and enforces 

those restrictions outside of the app’s processes.
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ARM TrustZone – Android 

Android Key Store:

Extraction prevention is provided based on two security measures:

• Key material never enters the application process

• Inputs for a operation that requires the key are fed into a “secure process”

• Compromised App can use keys, but cannot extract the key itself

• Confidentiality

• Keys can be bound to the TEE

• Similar to “wrap key” to be used from a particular device

• Integrity
93
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How does Key store work? First, lets setup the key players…

Normal World Secure World

TrustZone-capable CPU
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First OSes: Android OS in the Normal World, and a Trusted OS in the Secure World

Android OS

TrustZone-capable CPU

Trusted OS (OP-TEE, TrustyOS)

Normal World Secure World

Sec. 
Monitor
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To simplify things, lets assume there is one Android app running in Normal World

Android 
App

Android OS

TrustZone-capable CPU

Trusted OS (OP-TEE, TrustyOS)

Normal World Secure World

Sec. 
Monitor
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Within the Android OS is the KeyStore API
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Monitor

Android OS KeyStore API



ARM TrustZone – Android 

98

Within the Android OS is the KeyStore API, and a corresponding Keystore TA

Android 
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TrustZone-capable CPU

Trusted OS (OP-TEE, TrustyOS)

Normal World Secure World

Sec. 
Monitor

Android OS KeyStore API

KeyStore
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Lets assume the Android App is currently executing

Android 
App

TrustZone-capable CPU

Trusted OS (OP-TEE, TrustyOS)

Normal World Secure World

Sec. 
Monitor

Android OS KeyStore API

KeyStore
TA

NS-bit = 1
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Android App will call the KeyStore API to request a key

Android 
App

TrustZone-capable CPU

Trusted OS (OP-TEE, TrustyOS)

Normal World Secure World

Sec. 
Monitor

Android OS KeyStore API

KeyStore
TA

Request 
Key

NS-bit = 1
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KeyStore API forwards the request to TEE ….. How??

Android 
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Trusted OS (OP-TEE, TrustyOS)
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KeyStore API forwards the request to TEE ….. How??
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Security Monitor (atomically) switches from Normal World to Secure World

Android 
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TrustZone-capable CPU

Trusted OS (OP-TEE, TrustyOS)

Normal World Secure World
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NS-bit = 0
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KeyStore TA is invoked. It then generates a key pair (e.g., AES, RSA) – how?

Android 
App

TrustZone-capable CPU

Trusted OS (OP-TEE, TrustyOS)

Normal World Secure World
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Android OS KeyStore API

KeyStore
TA
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NS-bit = 0
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KeyStore TA is invoked. It then generates a key pair (e.g., AES, RSA) – how?

Android 
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KeyStore
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Key

NS-bit = 0
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Element

Generate 
key

Generate 
key



ARM TrustZone – Android 

What is the Secure Element?

• Dedicated hardware module

• Similar idea to TPM or HSM (sometimes is that)

• Isolated component designed to handle cryptographic operations

• Very version-specific

• Examples:

• Separate PUF-based logic outside the CPU core but in the SoC (ANI1271): 

• StrongBox
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https://www.silabs.com/documents/public/application-notes/an1271-efr32-secure-key-storage.pdf
https://docs.zebra.com/us/en/mobile-computers/handheld/tc5-series/tc53e-tc58e-prg/c-getting-started/r-tc53x-58x-features/c-tc53e-tc58e-secure-element.html
https://docs.zebra.com/us/en/mobile-computers/handheld/tc5-series/tc53e-tc58e-prg/c-getting-started/r-tc53x-58x-features/c-tc53e-tc58e-secure-element.html


ARM TrustZone – Architecture  

Recall:
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The TEE itself could be used for the SE, but less common

Android 
App

TrustZone-capable CPU

Trusted OS (OP-TEE, TrustyOS)

Normal World Secure World

Sec.
Monitor

Android OS KeyStore API

KeyStore
TA

Request 
Key

NS-bit = 0

SMC Forward

Invoked

Software SE

Generate 
key



ARM TrustZone – Android 

109

Generates key blob derived from a root key, stored in KS TA private memory
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“wrapped” to 
the SE in use
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Returns a blob handle
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Atomic context switch, then store blob handle in Android App memory 
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How about using the key? Invoke a KeyStore function, leading to SMC
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After being invoked, KeyStore TA retrieves key and performs operation

Android 
App

TrustZone-capable CPU
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After being invoked, KeyStore TA retrieves key and performs operation
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After being invoked, KeyStore TA retrieves key and performs operation

Android 
App

TrustZone-capable CPU
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Other features of Android:

• App signing

• Every app must be signed by the developers

• Unsigned apps are rejected by Google play or the package installer

• Biometrics

• Part of tiered authentication model – fingerprint senors

• Relies on the keystore for secure storage
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Other features of Android:

• Biometrics (continued)
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ARM TrustZone – Android 
Other features of Android:

• App signing

• Every app must be signed by the developers

• Unsigned apps are rejected by Google play or the package installer

• Biometrics

• Part of tiered authentication model – fingerprint senors

• Relies on the keystore for secure storage

• Verified Boot

• Rollback prevention

• Usable security – “Private Space” – sandboxed space with separate install of app
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Closing thoughts
Various hardware security paradigms:
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ARM TrustZone
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Intel SGX
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ARM TrustZone

TPM
Intel SGX

We saved the World!
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Various hardware security paradigms:
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ARM TrustZone

TPM
Intel SGX

We saved the World!

Hopefully, there 
aren’t any problems 
with these designs….



That’s all for today!
Coming up….
• Attacks on TPMs and TEEs

Reminders:
• A4 is due on July 25
• Research project proposal
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https://watssec.github.io/cs453-s25/assignments/a4/
https://watssec.github.io/cs453-s25/assignments/a4/


That’s all for today!
Resources:
• “Demystifying Arm TrustZone” – great one!
• “TrustZone Explained: Architectural Features and Use Cases”
• ARM Docs on TrustZone-A
• Android security resources
• Android KeyStore
• HSE & SoC as SE 
• “Safeguarding Crytographic Keys – TEE and Strongbox in Android”
• “Mobile Platform Security”
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https://dl.acm.org/doi/pdf/10.1145/3291047
https://dl.acm.org/doi/pdf/10.1145/3291047
https://sefcom.asu.edu/publications/trustzone-explained-cic2016.pdf
https://sefcom.asu.edu/publications/trustzone-explained-cic2016.pdf
https://developer.arm.com/Training/TrustZone%20for%20Armv8-A#Technical-Specifications
https://developer.arm.com/Training/TrustZone%20for%20Armv8-A#Technical-Specifications
https://developer.arm.com/Training/TrustZone%20for%20Armv8-A#Technical-Specifications
https://developer.arm.com/Training/TrustZone%20for%20Armv8-A#Technical-Specifications
https://source.android.com/docs/security/features/keystore
https://source.android.com/docs/security/features/keystore
https://source.android.com/docs/security/features/keystore
https://source.android.com/docs/security/features/keystore
https://www.silabs.com/documents/public/application-notes/an1271-efr32-secure-key-storage.pdf
https://www.silabs.com/documents/public/application-notes/an1271-efr32-secure-key-storage.pdf
https://medium.com/@dfs.techblog/safeguarding-cryptographic-keys-implementing-tee-and-strongbox-in-android-applications-7894c800e43e
https://medium.com/@dfs.techblog/safeguarding-cryptographic-keys-implementing-tee-and-strongbox-in-android-applications-7894c800e43e
https://medium.com/@dfs.techblog/safeguarding-cryptographic-keys-implementing-tee-and-strongbox-in-android-applications-7894c800e43e
https://medium.com/@dfs.techblog/safeguarding-cryptographic-keys-implementing-tee-and-strongbox-in-android-applications-7894c800e43e
https://medium.com/@dfs.techblog/safeguarding-cryptographic-keys-implementing-tee-and-strongbox-in-android-applications-7894c800e43e
https://medium.com/@dfs.techblog/safeguarding-cryptographic-keys-implementing-tee-and-strongbox-in-android-applications-7894c800e43e
https://asokan.org/asokan/Padova2014/tutorial-mobileplatsec.pdf
https://asokan.org/asokan/Padova2014/tutorial-mobileplatsec.pdf
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