
Module: Hardware & Mobile Security
Lecture: Android & ARM TrustZone

Adam Caulfield
University of Waterloo

Spring 2025

CS 453/698: Software and Systems Security

1

Reminders & Recap
Reminders:
• A4 is released

• Due July 25th

• Send your research project proposals to Meng and me!

Recap – last time we covered:

Intro to Trusted Execution Environments (TEE)
• Separate, isolated, and minimal execution environmet
• Enabled as a part of the CPU arch. itself (not a separate external module)

Intel SGX
• User-space TEE → enclaves
• Architecture details → Isolation, life cycle, address translation, attestation

2

https://watssec.github.io/cs453-s25/assignments/a4/
https://watssec.github.io/cs453-s25/assignments/a4/

Today
Continue: Hardware and Mobile Security

Different TEE architecture and real-world use case

ARM TrustZone
• System-level or “split world” architecture
• Overview
• Architectural details

Android OS
• How it uses TrustZone (particular focus on KeyStore)
• Other security features

3

A few family of CPUs provided by ARM

ARM Processors

4

ARM Cortex-A family

• Application processors

• Supports OS and high-performance apps

• This is the CPU in smart phones, smart tv

ARM Cortex-R family

• Real-time processors with high-

performance and reliability

• Support real-time processing and

mission-critical control

ARM Cortex-M family

• Microcontrollers

• Cost-sensitive, SoC, low-power

processing

ARM Processors

A few family of CPUs provided by ARM

5

ARM Processors
A few family of CPUs provided by ARM

ARM Cortex-A family
• Application processors
• Support OS and high-performance applications
• This is the CPU in smart phones, smart tv, etc.

ARM Cortex-R family
• Real-time processors with high-performance and reliability
• Support real-time processing and mission-critical control

ARM Cortex-M family
• Microcontrollers
• Cost-sensitive, SoC, low-power processing

6Covered Today!Later… (Research lecture)

ARM TrustZone Overview

What is TrustZone?

ARM Processors’ TEE

• Splits the system into two worlds

• From ARM:

• “The security of the system is achieved by partitioning all (…) hardware and

software resources so that they exist in one of two worlds – the Secure world for

the security subsystem, and the Normal world for everything else.”

7

ARM TrustZone Overview

8

Some visualizations….

Process 1

Rich OS (e.g., Linux)

Process 2

Baseline Runtime System

CPU

ARM TrustZone Overview

9

Some visualizations….

Process 1

Rich OS (e.g., Linux)

Process 2

Runtime System with TPM

CPUTPM

ARM TrustZone Overview

10

Some visualizations….

Process 1

Rich OS (e.g., Linux)

Process 2

Runtime System with SGX

SGX-capable CPU

SGX
Enclave

SGX
Enclave

ARM TrustZone Overview

11

Some visualizations….

Process 1

Rich OS (e.g., Linux)

Process 2

Runtime System with TrustZone?

TrustZone-capable CPU

ARM TrustZone Overview

12

Some visualizations….

Process 1

Rich OS (e.g., Linux)

Process 2

Runtime System with TrustZone?

TrustZone-capable CPU

Split everything
between two

worlds

ARM TrustZone Overview

13

Some visualizations….

Process 1

Rich OS (e.g., Linux)

Process 2

Runtime System with TrustZone?

TrustZone-capable CPU

Normal World

ARM TrustZone Overview

14

Some visualizations….

Process 1

Rich OS (e.g., Linux)

Process 2

TrustZone-capable CPU

Trusted App 1

Small Trusted OS

Trusted App 2

Normal World
Runtime System with TrustZone?

Secure World

ARM TrustZone Overview

TrustZone’s Guarantee:

Even if the Normal World is fully compromised, the Secure World

remains safe, confidential, isolated, etc.

15

ARM TrustZone Overview

16

Some visualizations….

Process 1 Process 2

TrustZone-capable CPU

Trusted App 1 Trusted App 2

Normal World
Runtime System with TrustZone?

Secure World

What happens now?

Small Trusted OSRich OS (e.g., Linux)

ARM TrustZone Overview

17

Some visualizations….

Process 1 Process 2

TrustZone-capable CPU

Trusted App 1 Trusted App 2

Normal World
Runtime System with TrustZone?

Secure World

Small Trusted OSRich OS (e.g., Linux)

ARM TrustZone Overview

18

Some visualizations….

Process 1

Rich OS (e.g., Linux)

Process 2

TrustZone-capable CPU

Trusted App 1

Small Trusted OS

Trusted App 2

Normal World
Runtime System with TrustZone?

Secure World

ARM TrustZone Overview

19

Some visualizations….

Process 1

Rich OS (e.g., Linux)

Process 2

TrustZone-capable CPU

Trusted App 1

Small Trusted OS

Trusted App 2

Normal World
Runtime System with TrustZone?

Secure World

ARM TrustZone Overview

20

Some visualizations….

Process 1

Rich OS (e.g., Linux)

Process 2

TrustZone-capable CPU

Trusted App 1

Small Trusted OS

Trusted App 2

Normal World
Runtime System with TrustZone?

Secure World

ARM TrustZone Overview

21

Some visualizations….

Process 1 Process 2

TrustZone-capable CPU

Trusted App 1 Trusted App 2

Normal World
Runtime System with TrustZone?

Secure World

But beware!!!

Small Trusted OSRich OS (e.g., Linux)

ARM TrustZone Overview

22

Some visualizations….

Process 1 Process 2

TrustZone-capable CPU

Trusted App 1 Trusted App 2

Normal World
Runtime System with TrustZone?

Secure World

But beware!!!

Small Trusted OSRich OS (e.g., Linux)

ARM TrustZone Overview

23

Some visualizations….

Process 1 Process 2

TrustZone-capable CPU

Trusted App 1 Trusted App 2

Normal World
Runtime System with TrustZone?

Secure World

But beware!!!

Small Trusted OSRich OS (e.g., Linux)

ARM TrustZone Overview

24

Some visualizations….

Process 1 Process 2

TrustZone-capable CPU

Trusted App 1 Trusted App 2

Normal World
Runtime System with TrustZone?

Secure World

But beware!!!

Small Trusted OSRich OS (e.g., Linux)

ARM TrustZone Overview

25

Some visualizations….

Process 1 Process 2

TrustZone-capable CPU

Trusted App 1 Trusted App 2

Normal World
Runtime System with TrustZone?

Secure World

But beware!!!

Small Trusted OSRich OS (e.g., Linux)

ARM TrustZone Overview

Topics:

• Isolation in TrustZone

• Secure Monitor Calls (SMC) – Invocation of Secure World code

• Android

26

ARM TrustZone Overview

Topics:

• Isolation in TrustZone

• Secure Monitor Calls (SMC) – Invocation of Secure World code

• Android

27

ARM TrustZone – Isolation

Main Design Guidelines

• Store and manipulate security-critical info within the Secure World

• Passwords, biometrics, private data, etc.

• Keep the code inside the Secure World minimal → small TCB

• Non-security tasks stay out in the Normal World

• E.g., network stack, device drivers, UI implementation, etc.

• Normal World Apps make requests to Secure World apps via well-defined APIs

• E.g., request decryption, check this biometric input, etc…

28

ARM TrustZone – Isolation

Main Design Guidelines

• Store and manipulate security-critical info within the Secure World

• Passwords, biometrics, private data, etc.

• Keep the code inside the Secure World minimal → small TCB

• Non-security tasks stay out in the Normal World

• E.g., network stack, device drivers, UI implementation, etc.

• Normal World Apps make requests to Secure World apps via well-defined APIs

• E.g., request decryption, check this biometric input, etc…

29

ARM TrustZone – Isolation

Main Design Guidelines

• Store and manipulate security-critical info within the Secure World

• Passwords, biometrics, private data, etc.

• Keep the code inside the Secure World minimal → small TCB

• Non-security tasks stay out in the Normal World

• E.g., network stack, device drivers, UI implementation, etc.

• Normal World Apps make requests to Secure World apps via well-defined APIs

• E.g., request decryption, check this biometric input, etc…

30

ARM TrustZone – Isolation

Main Design Guidelines

• Store and manipulate security-critical info within the Secure World

• Passwords, biometrics, private data, etc.

• Keep the code inside the Secure World minimal → small TCB

• Non-security tasks stay out in the Normal World

• E.g., network stack, device drivers, UI implementation, etc.

• Normal World Apps make requests to Secure World apps via well-defined APIs

• E.g., request decryption, check this biometric input, etc…

31

ARM TrustZone – Isolation

32

CPU MMU

Memory

Virt Addr

BUS
Phy Addr

Virtual
Prefix

Physical
Prefix

00001 24E78

00002 045E2

00003 AEC78

00004 A2345

00005 AF123

Memory Translation Revisited…

ARM TrustZone – Isolation

33

CPU MMU

Memory

Virt Addr

BUS
Phy Addr

Processor
Reserved
Memory
 (PRM)

0xA00…0

0xAFF…F

SGX
Check

Default table
(normal mode)

Allowed
accesses

< A0000

>= B0000

Virtual
Prefix

Physical
Prefix

00001 24E78

00002 045E2

00003 AEC78

00004 A2345

00005 AF123

Memory Translation in Intel SGX Revisited….

enclave1 table

Allowed
accesses

AEC78

-

enclave2 table

Allowed
accesses

A2345

-

enclave3 table

Allowed
accesses

AF123

-

<pageA> 0xA2345

< pageB>

< pageC>

ARM TrustZone – Isolation

34

CPU MMU

Memory

Virt Addr

BUS
Phy Addr

Processor
Reserved
Memory
 (PRM)

0xA00…0

0xAFF…F

SGX
Check

Default table
(normal mode)

Allowed
accesses

< A0000

>= B0000

Virtual
Prefix

Physical
Prefix

00001 24E78

00002 045E2

00003 AEC78

00004 A2345

00005 AF123

Memory Translation in Intel SGX Revisited….

enclave1 table

Allowed
accesses

AEC78

-

enclave2 table

Allowed
accesses

A2345

-

enclave3 table

Allowed
accesses

AF123

-

<pageA> 0xA2345

< pageB>

< pageC>

ARM TrustZone – Isolation
Similar idea → CPU is now involved in the memory translation

TrustZone approach:

• Two worlds → two page tables

• Both are active in an MMU at a given time

• Normal world page table → managed by the Rich OS

• Secure world page table → managed by the Trusted OS

• One additional bit in the CPU → tells MMU which table to load

• Non-Secure (NS) bit:

• NS = 1 → currently in Normal World, Secure World access is blocked

• NS = 0 → currently in Secure World, Secure World access is allowed

• Referred to as “33rd bit”
35

ARM TrustZone – Isolation
Similar idea → CPU is now involved in the memory translation

TrustZone approach:

• Two worlds → two page tables

• Both are active in an MMU at a given time

• Normal world page table → managed by the Rich OS

• Secure world page table → managed by the Trusted OS

• One additional bit in the CPU → tells MMU which table to load

• Non-Secure (NS) bit:

• NS = 1 → currently in Normal World, Secure World access is blocked

• NS = 0 → currently in Secure World, Secure World access is allowed

• Referred to as “33rd bit”
36

ARM TrustZone – Isolation
Similar idea → CPU is now involved in the memory translation

TrustZone approach:

• Two worlds → two page tables

• Both are active in an MMU at a given time

• Normal world page table → managed by the Rich OS

• Secure world page table → managed by the Trusted OS

• One additional bit in the CPU → tells MMU which table to load

• Non-Secure (NS) bit:

• NS = 1 → currently in Normal World, Secure World access is blocked

• NS = 0 → currently in Secure World, Secure World access is allowed

• Referred to as “33rd bit”
37

ARM TrustZone – Isolation
Similar idea → CPU is now involved in the memory translation

TrustZone approach:

• Two worlds → two page tables

• Both are active in an MMU at a given time

• Normal world page table → managed by the Rich OS

• Secure world page table → managed by the Trusted OS

• One additional bit in the CPU → tells MMU which table to load

• Non-Secure (NS) bit:

• NS = 1 → currently in Normal World, Secure World access is blocked

• NS = 0 → currently in Secure World, Secure World access is allowed

• Referred to as “33rd bit”
38

ARM TrustZone – Isolation
Similar idea → CPU is now involved in the memory translation

TrustZone approach (part 1):

• Two worlds → two page tables

• Both are active in an MMU at a given time

• Normal world page table → managed by the Rich OS

• Secure world page table → managed by the Trusted OS

• One additional bit in the CPU → tells MMU which table to load

• Non-Secure (NS) bit:

• NS = 1 → currently in Normal World, Secure World access is blocked

• NS = 0 → currently in Secure World, Secure World access is allowed

• Referred to as “33rd bit”
39

ARM TrustZone – Isolation

40

CPU MMU

Memory

Virt Addr

BUS
Phy Addr

Virtual
Prefix

Physical
Prefix

00001 24E78

00002 045E2

00003 AEC78

00004 12345

The details…

ARM TrustZone – Isolation

41

CPU MMU

Memory

Virt Addr

BUS
Phy Addr

Virtual
Prefix

Physical
Prefix

00001 24E78

00002 045E2

00003 AEC78

00004 12345

NS Bit

Now, the CPU also passes the NS bit to the MMU

ARM TrustZone – Isolation

42

CPU MMU

Memory

Virt Addr

BUS
Phy Addr

Virtual
Prefix

Physical
Prefix

00001 24E78

00002 045E2

00003 AEC78

00004 12345

NS Bit

And the MMU has two page tables.
NS bit tells MMU which to use

Virtual
Prefix

Physical
Prefix

00001 567FE

00002 38E21

00003 FFF8F

00004 CC345

NS == 1 NS == 0

ARM TrustZone – Isolation

43

CPU MMU

Memory

Virt Addr

BUS
Phy Addr

Virtual
Prefix

Physical
Prefix

00001 24E78

00002 045E2

00003 AEC78

00004 12345

NS Bit

Now, the CPU also passes the NS bit to the MMU

Virtual
Prefix

Physical
Prefix

00001 567FE

00002 38E21

00003 FFF8F

00004 CC345

NS == 1 NS == 0

ARM TrustZone – Isolation

TrustZone approach (continued..)

• Physical Memory Partitioning in addition to the modified MMU!

• TrustZone enables configuration of specific physical memory regions as secure or

non-secure, such that applications can only access memory assigned to their world

• How?

• Two hardware controllers:

• TrustZone Address Space Controller (TZASC) → on chip memory (SoC) and DRAM

• TrustZone Memory Adapter (TZMA) → off-chip memory (e.g., external peripherals SRAM)

• TZASC and TZMA have the same function applied to different resources
44

ARM TrustZone – Isolation

45

CPU MMU

Memory

Virt Addr

BUS
Phy Addr

Virtual
Prefix

Physical
Prefix

00001 24E78

00002 045E2

00003 AEC78

00004 12345

NS Bit

Where are the TZASC/TZMA?

Virtual
Prefix

Physical
Prefix

00001 567FE

00002 38E21

00003 FFF8F

00004 CC345

NS == 1 NS == 0

ARM TrustZone – Isolation

46

CPU MMU

Memory

Virt Addr Phy Addr

Virtual
Prefix

Physical
Prefix

00001 24E78

00002 045E2

00003 AEC78

00004 12345

NS Bit

Instead of the MMU accessing the BUS directly…

Virtual
Prefix

Physical
Prefix

00001 567FE

00002 38E21

00003 FFF8F

00004 CC345

NS == 1 NS == 0

ARM TrustZone – Isolation

47

CPU MMU

Memory

Virt Addr
TZASC/
TZMA

Phy Addr

Virtual
Prefix

Physical
Prefix

00001 24E78

00002 045E2

00003 AEC78

00004 12345

NS Bit

Physical address passes through TZASC/TZMA

Virtual
Prefix

Physical
Prefix

00001 567FE

00002 38E21

00003 FFF8F

00004 CC345

NS == 1 NS == 0

BUS

ARM TrustZone – Isolation

48

CPU MMU

Memory

Virt Addr
TZASC/
TZMA

Phy Addr

Virtual
Prefix

Physical
Prefix

00001 24E78

00002 045E2

00003 AEC78

00004 12345

NS Bit

TZASC/TZMA check access according to the defined partition

Virtual
Prefix

Physical
Prefix

00001 567FE

00002 38E21

00003 FFF8F

00004 CC345

NS == 1 NS == 0
Physical
Region

Condition

12345 NS==0

045E2 none

FFF8F NS==0

00004 none

BUS

ARM TrustZone – Isolation

49

CPU MMU

Memory

Virt Addr
TZASC/
TZMA

Phy Addr

Virtual
Prefix

Physical
Prefix

00001 24E78

00002 045E2

00003 AEC78

00004 12345

NS Bit

Reads from partition table and the NS bit

Virtual
Prefix

Physical
Prefix

00001 567FE

00002 38E21

00003 FFF8F

00004 CC345

NS == 1 NS == 0
Physical
Region

Condition

12345 NS==0

045E2 none

FFF8F NS==0

00004 none

NS Bit

BUS

ARM TrustZone – Isolation

50

CPU MMU

Memory

Virt Addr
TZASC/
TZMA

Phy Addr

Virtual
Prefix

Physical
Prefix

00001 24E78

00002 045E2

00003 AEC78

00004 12345

NS Bit

Reads from partition table and the NS bit

Virtual
Prefix

Physical
Prefix

00001 567FE

00002 38E21

00003 FFF8F

00004 CC345

NS == 1 NS == 0
Physical
Region

Condition

12345 NS==0

045E2 none

FFF8F NS==0

00004 none

NS Bit

TZASC/TZMA allows / drops the access based on both.

BUS

ARM TrustZone – Isolation
TrustZone-A MMU + TZASC/TZMA

Together provide isolation in TrustZone

TZASC/TZMA:

Implement physical isolation between the worlds

• Isolate physical memory, peripherals, and hardware resources

• Provides system-level isolation

MMU:

• Virtual isolation between processes running in each world

• Provides process-level isolation
51

ARM TrustZone – Isolation

52

Some visualizations….

Process 1

Rich OS (e.g., Linux)

Process 2

TrustZone-capable CPU

Trusted App 1

Small Trusted OS

Trusted App 2

Normal World
Runtime System with TrustZone?

Secure World

ARM TrustZone – Isolation

53

Some visualizations….

Process 1

Rich OS (e.g., Linux)

Process 2

TrustZone-capable CPU

Trusted App 1

Small Trusted OS

Trusted App 2

Normal World
Runtime System with TrustZone?

Secure World

MMU MMU

ARM TrustZone – Isolation

54

Some visualizations….

Process 1

Rich OS (e.g., Linux)

Process 2

TrustZone-capable CPU

Trusted App 1

Small Trusted OS

Trusted App 2

Normal World
Runtime System with TrustZone?

Secure World

MMU MMU

TZASC/TZMA

ARM TrustZone – Isolation

55

CPU MMU

Memory

Virt Addr
TZASC/
TZMA

Phy Addr

Virtual
Prefix

Physical
Prefix

00001 24E78

00002 045E2

00003 AEC78

00004 12345

NS Bit

Some examples….

Virtual
Prefix

Physical
Prefix

00001 567FE

00002 38E21

00003 FFF8F

00004 CC345

NS == 1 NS == 0
Physical
Region

Condition

12345 NS==0

045E2 none

FFF8F NS==0

00004 none

NS Bit

Access 1: NS = 1; Virt Addr = 0x00002123

Access 2: NS = 0; Virt Addr = 0x00003456

Access 3: NS = 1; Virt Addr = 0x00004789

Access 4: NS = 1; Virt Addr = 0x00006333

Access 5: NS = 0; Virt Addr = 0x00002123

BUS

ARM TrustZone – Isolation

56

CPU MMU

Memory

Virt Addr
TZASC/
TZMA

Phy Addr

Virtual
Prefix

Physical
Prefix

00001 24E78

00002 045E2

00003 AEC78

00004 12345

NS Bit

Some examples….

Virtual
Prefix

Physical
Prefix

00001 567FE

00002 045E2

00003 FFF8F

00004 CC345

NS == 1 NS == 0
Physical
Region

Condition

12345 NS==0

045E2 none

FFF8F NS==0

00004 none

NS Bit

Access 1: NS = 1; Virt Addr = 0x00002123 Accesses 0x045E2123

Access 2: NS = 0; Virt Addr = 0x00003456

Access 3: NS = 1; Virt Addr = 0x00004789

Access 4: NS = 1; Virt Addr = 0x00006333

Access 5: NS = 0; Virt Addr = 0x00002123

BUS

ARM TrustZone – Memory Translation

57

CPU MMU

Memory

Virt Addr
TZASC/
TZMA

Phy Addr

Virtual
Prefix

Physical
Prefix

00001 24E78

00002 045E2

00003 AEC78

00004 12345

NS Bit

Some examples….

Virtual
Prefix

Physical
Prefix

00001 567FE

00002 045E2

00003 FFF8F

00004 CC345

NS == 1 NS == 0
Physical
Region

Condition

12345 NS==0

045E2 none

FFF8F NS==0

00004 none

NS Bit

Access 1: NS = 1; Virt Addr = 0x00002123 Accesses 0x045E2123

Access 2: NS = 0; Virt Addr = 0x00003456 Accesses 0xFFF8F456

Access 3: NS = 1; Virt Addr = 0x00004789

Access 4: NS = 1; Virt Addr = 0x00006333

Access 5: NS = 0; Virt Addr = 0x00002123

BUS

ARM TrustZone – Isolation

58

CPU MMU

Memory

Virt Addr
TZASC/
TZMA

Phy Addr

Virtual
Prefix

Physical
Prefix

00001 24E78

00002 045E2

00003 AEC78

00004 12345

NS Bit

Some examples….

Virtual
Prefix

Physical
Prefix

00001 567FE

00002 045E2

00003 FFF8F

00004 CC345

NS == 1 NS == 0
Physical
Region

Condition

12345 NS==0

045E2 none

FFF8F NS==0

00004 none

NS Bit

Access 1: NS = 1; Virt Addr = 0x00002123 Accesses 0x045E2123

Access 2: NS = 0; Virt Addr = 0x00003456 Accesses 0xFFF8F456

Access 3: NS = 1; Virt Addr = 0x00004789 Discarded by TZASC/TZMA

Access 4: NS = 1; Virt Addr = 0x00006333

Access 5: NS = 0; Virt Addr = 0x00002123

BUS

ARM TrustZone – Isolation

59

CPU MMU

Memory

Virt Addr
TZASC/
TZMA

Phy Addr

Virtual
Prefix

Physical
Prefix

00001 24E78

00002 045E2

00003 AEC78

00004 12345

NS Bit

Some examples….

Virtual
Prefix

Physical
Prefix

00001 567FE

00002 045E2

00003 FFF8F

00004 CC345

NS == 1 NS == 0
Physical
Region

Condition

12345 NS==0

045E2 none

FFF8F NS==0

00004 none

NS Bit

Access 1: NS = 1; Virt Addr = 0x00002123 Accesses 0x045E2123

Access 2: NS = 0; Virt Addr = 0x00003456 Accesses 0xFFF8F456

Access 3: NS = 1; Virt Addr = 0x00004789 Discarded by TZASC/TZMA

Access 4: NS = 1; Virt Addr = 0x00006333 Discarded by MMU

Access 5: NS = 0; Virt Addr = 0x00002123

BUS

ARM TrustZone – Isolation

60

CPU MMU

Memory

Virt Addr
TZASC/
TZMA

Phy Addr

Virtual
Prefix

Physical
Prefix

00001 24E78

00002 045E2

00003 AEC78

00004 12345

NS Bit

Some examples….

Virtual
Prefix

Physical
Prefix

00001 567FE

00002 045E2

00003 FFF8F

00004 CC345

NS == 1 NS == 0
Physical
Region

Condition

12345 NS==0

045E2 none

FFF8F NS==0

00004 none

NS Bit

Access 1: NS = 1; Virt Addr = 0x00002123 Accesses 0x045E2123

Access 2: NS = 0; Virt Addr = 0x00003456 Accesses 0xFFF8F456

Access 3: NS = 1; Virt Addr = 0x00004789 Discarded by TZASC/TZMA

Access 4: NS = 1; Virt Addr = 0x00006333 Discarded by MMU

Access 5: NS = 0; Virt Addr = 0x00002123 Accesses 0x045E2123

BUS

ARM TrustZone – Isolation

Two key questions:

• Who configures the TZASC/TMA table?

• Secure World code: first configuration after boot! It is more privileged than Normal World

• Secure world executes first and configures TZMA/TZASC before launching the normal world and rich OS.

• Security of TrustZone requires TrustZone-aware Secure boot!

• Who controls the NS bit value?

• The CPU in hardware

• From normal world, NS bit can only be changed (1 → 0) by issuing a Security Monitor Call (SMC)

• SMC atomically gives control to Secure World and sets NS=0

• SMC jumps to Security Monitor that performs context switch between the worlds

• The NS bit is set back to NS=1 before returning to Normal World
61

ARM TrustZone – Isolation

Two key questions:

• Who configures the TZASC/TMA table?

• Secure World code: first configuration after boot! It is more privileged than Normal World

• Secure world executes first and configures TZMA/TZASC before launching the normal world and rich OS.

• Security of TrustZone requires TrustZone-aware Secure boot!

• Who controls the NS bit value?

• The CPU in hardware

• From normal world, NS bit can only be changed (1 → 0) by issuing a Security Monitor Call (SMC)

• SMC atomically gives control to Secure World and sets NS=0

• SMC jumps to Security Monitor that performs context switch between the worlds

• The NS bit is set back to NS=1 before returning to Normal World
62

ARM TrustZone – Isolation

Two key questions:

• Who configures the TZASC/TMA table?

• Secure World code: first configuration after boot! It is more privileged than Normal World

• Secure world executes first and configures TZMA/TZASC before launching the normal world and rich OS.

• Security of TrustZone requires TrustZone-aware Secure boot!

• Who controls the NS bit value?

• The CPU in hardware

• From normal world, NS bit can only be changed (1 → 0) by issuing a Security Monitor Call (SMC)

• SMC atomically gives control to Secure World and sets NS=0

• SMC jumps to Security Monitor that performs context switch between the worlds

• The NS bit is set back to NS=1 before returning to Normal World
63

ARM TrustZone – Isolation

Security Monitor and SMC:

Switching between worlds requires a security monitor call (SMC)

The Security Monitor is part of the Secure World’s TCB

64

ARM TrustZone – Isolation

Caching in TrustZone

The problem: the CPU, and consequently the cache, must be securely shared between worlds

The TZMA/TZASC split physical memory, but not the cache

So without any additional measures, the following is a possibility:

1. Secure World is running

2. Secure World transfers context back to the Normal World

3. Normal World reads the same cached address used by Secure World

4. Data leaked! → Isolation is broken!

65

ARM TrustZone – Isolation

Caching in TrustZone

The problem: the CPU, and consequently the cache, must be securely shared between worlds

The TZMA/TZASC split physical memory, but not the cache

So without any additional measures, the following is a possibility:

1. Secure World is running

2. Secure World transfers context back to the Normal World

3. Normal World reads the same cached address used by Secure World

4. Data leaked! → Isolation is broken!

66

ARM TrustZone – Isolation

Caching in TrustZone

How to handle this problem?

Naïve solution: Remove the cache => secure, but extremely slow.

Alternative: Always flush the cache when switching worlds => secure, but still pretty slow.

TrustZone’s solution:

Include the NS bit in the cache look-up => no need to flush the cache!

• Allows for fast world switching

• Cached data may be kept across successive switches
67

ARM TrustZone – Isolation

Caching in TrustZone

How to handle this problem?

Naïve solution: Remove the cache => secure, but extremely slow.

Alternative: Always flush the cache when switching worlds => secure, but still pretty slow.

TrustZone’s solution:

Include the NS bit in the cache look-up => no need to flush the cache!

• Allows for fast world switching

• Cached data may be kept across successive switches
68

ARM TrustZone – Isolation

Caching in TrustZone

69

CPU TZASC/
TZMA

Phy Addr

NS Bit

BUSMMU

Virt Addr

NS Bit

ARM TrustZone – Isolation

Caching in TrustZone

70

CPU
Virt Addr

TZASC/
TZMA

Phy Addr

NS Bit

NS Bit

BUSMMUCACHE
Virt Addr

NS Bit

ARM TrustZone – Isolation

Caching in TrustZone

71

CPU
Virt Addr

TZASC/
TZMA

Phy Addr

NS Bit

NS Bit

BUSMMUCACHE
Virt Addr

NS Bit

Virtual
Address

Current
Content

0x00001CFB 0

0x00002CCA 42

0x00003F12 3

0x00004123 -512345

Normal Cache

ARM TrustZone – Isolation

Caching in TrustZone

72

CPU
Virt Addr

TZASC/
TZMA

Phy Addr

NS Bit

NS Bit

BUSMMUCACHE
Virt Addr

NS Bit

Virtual
Address

Current
Content

NS == 1;
0x00001CFB

0

NS == 0;
0x00002CCA

42

NS == 1;
0x00003F12

3

NS == 1;
0x00004123

-512345

TZ Cache

ARM TrustZone – Isolation

Caching in TrustZone

73

CPU
Virt Addr

TZASC/
TZMA

Phy Addr

NS Bit

NS Bit

BUSMMUCACHE
Virt Addr

NS Bit

Virtual
Address

Current
Content

NS == 1;
0x00001CFB

0

NS == 0;
0x00002CCA

42

NS == 1;
0x00003F12

3

NS == 1;
0x00004123

-512345

TZ Cache

NS-bit can be seen as part of the virtual address
Even for caching purposes….

Hence the “33rd bit” nickname

ARM TrustZone – Isolation

Caching in TrustZone

74

CPU
Virt Addr

TZASC/
TZMA

Phy Addr

NS Bit

NS Bit

BUSMMUCACHE
Virt Addr

NS Bit

Virtual
Address

Current
Content

NS == 1;
0x00001CFB

0

NS == 0;
0x00002CCA

42

NS == 1;
0x00003F12

3

NS == 1;
0x00004123

-512345

TZ Cache

NS-bit can be seen as part of the virtual address
Even for caching purposes….

Hence the “33rd bit” nickname

Example:
NS == 1; 0x00001CFB → Cache hit in the Normal World

ARM TrustZone – Isolation

Caching in TrustZone

75

CPU
Virt Addr

TZASC/
TZMA

Phy Addr

NS Bit

NS Bit

BUSMMUCACHE
Virt Addr

NS Bit

Virtual
Address

Current
Content

NS == 1;
0x00001CFB

0

NS == 0;
0x00002CCA

42

NS == 1;
0x00003F12

3

NS == 1;
0x00004123

-512345

TZ Cache

NS-bit can be seen as part of the virtual address
Even for caching purposes….

Hence the “33rd bit” nickname

Example:
NS == 0; 0x00004123 → Cache hit in the Secure World

ARM TrustZone – Isolation

Caching in TrustZone

76

CPU
Virt Addr

TZASC/
TZMA

Phy Addr

NS Bit

NS Bit

BUSMMUCACHE
Virt Addr

NS Bit

Virtual
Address

Current
Content

NS == 1;
0x00001CFB

0

NS == 0;
0x00002CCA

42

NS == 1;
0x00003F12

3

NS == 1;
0x00004123

-512345

TZ Cache

NS-bit can be seen as part of the virtual address
Even for caching purposes….

Hence the “33rd bit” nickname

Question: Can the Normal World ever cause a cache hit
for data cached by the Secure World?

ARM TrustZone – Isolation

Caching in TrustZone

77

CPU
Virt Addr

TZASC/
TZMA

Phy Addr

NS Bit

NS Bit

BUSMMUCACHE
Virt Addr

NS Bit

Virtual
Address

Current
Content

NS == 1;
0x00001CFB

0

NS == 0;
0x00002CCA

42

NS == 1;
0x00003F12

3

NS == 1;
0x00004123

-512345

TZ Cache

NS-bit can be seen as part of the virtual address
Even for caching purposes….

Hence the “33rd bit” nickname

Question: Can the Normal World ever cause a cache hit
for data cached by the Secure World?

Normal World can never cause a cache hit for data
cached by the Secure World execution.

ARM TrustZone – Isolation

Caching in TrustZone

Also, the MMU has a cache:

• Called the TLB: Translation Lookaside Buffer

• Same principle for TrustZone’s CPU cache

78

ARM TrustZone – Isolation

Summary of Isolation in TrustZone:

In main memory:

• Physical isolation implemented by TZMA/TZASC based on NS-bit

Within CPU cache and TLB:

• Propagate NS-bit through every virtual address look-up

• NS-bit is “33rd bit”

Reminder:

• NS bit value is controlled by CPU hardware. Only way to set it to 0 is by calling SMC, which also gives

control to TrustZone’s trusted Security Monitor
79

ARM TrustZone Overview

Topics:

• Isolation in TrustZone

• Secure Monitor Calls (SMC) – Invocation of Secure World code

• Android

80

ARM TrustZone – SMC

Revisiting the system flow:

Controlled enter and exit from the Secure World

81

ARM TrustZone – SMC

Revisiting the system flow:

Controlled enter and exit from the Secure World

82
The moment the CPU Flips the NS-bit

ARM TrustZone – SMC

SMC Instruction – Calling Convention

• A function identifier (32-bits) is passed using CPU register (R0)

• Can be used to tell the security monitor which Trusted App is the destination of this call

• SMC Arguments are passed in registers R1-R7

• Inputs destined to the secure world

• Results are also returned to normal world using registers R0-R7

• Convention: not enforced by hardware anywhere

• It is up to the Security Monitor to define its own behavior

• Must then be followed/implemented by the SMC caller
83

ARM TrustZone – SMC

SMC Instruction – Calling Convention

• A function identifier (32-bits) is passed using CPU register (R0)

• Can be used to tell the security monitor which Trusted App is the destination of this call

• SMC Arguments are passed in registers R1-R7

• Inputs destined to the secure world

• Results are also returned to normal world using registers R0-R7

• Convention: not enforced by hardware anywhere

• It is up to the Security Monitor to define its own behavior

• Must then be followed/implemented by the SMC caller
84

ARM TrustZone – SMC

SMC Instruction – Calling Convention

• A function identifier (32-bits) is passed using CPU register (R0)

• Can be used to tell the security monitor which Trusted App is the destination of this call

• SMC Arguments are passed in registers R1-R7

• Inputs destined to the secure world

• Results are also returned to normal world using registers R0-R7

• Convention: not enforced by hardware anywhere

• It is up to the Security Monitor to define its own behavior

• Must then be followed/implemented by the SMC caller
85

ARM TrustZone – SMC

SMC Instruction – Calling Convention

• A function identifier (32-bits) is passed using CPU register (R0)

• Can be used to tell the security monitor which Trusted App is the destination of this call

• SMC Arguments are passed in registers R1-R7

• Inputs destined to the secure world

• Results are also returned to normal world using registers R0-R7

• Convention: not enforced by hardware anywhere

• It is up to the Security Monitor to define its own behavior

• Must then be followed/implemented by the SMC caller
86

ARM TrustZone – Architecture

The whole beast:

87

ARM TrustZone – Architecture

The whole beast:

88

Some cryptographic
primitives outside CPU
but in SoC

(keep in mind….)

ARM TrustZone – Architecture

Important reminders about TrustZone’s design:

• Secure boot must guarantee that the Secure World runs first

• After Secure World completes secure boot → “ACTIVE”

• Availability

• Boots first!

• Also, resources assigned to secure world have priority (e.g., interrupts via TrustZone’s GIC)

• Different from TPM and SGX → Has an “active” characteristic

89

ARM TrustZone Overview

Topics:

• Isolation in TrustZone

• Secure Monitor Calls (SMC) – Invocation of Secure World code

• Android

90

ARM TrustZone – Android

Provides runtime environment built atop TrustZone

• Android OS & Apps → in the normal world

• Trusted OS & Trusted Apps → in the secure world

Features of interest:

• Key store

91

ARM TrustZone – Android

Android Key Store:

Protects key material from unauthorized use in two ways. First it .. Prevents the

extraction of keys from application processes and from the Android device, and Second

it makes apps specify the authorized use of their keys within the device and enforces

those restrictions outside of the app’s processes.

92

ARM TrustZone – Android

Android Key Store:

Extraction prevention is provided based on two security measures:

• Key material never enters the application process

• Inputs for a operation that requires the key are fed into a “secure process”

• Compromised App can use keys, but cannot extract the key itself

• Confidentiality

• Keys can be bound to the TEE

• Similar to “wrap key” to be used from a particular device

• Integrity
93

ARM TrustZone -- Android

94

How does Key store work? First, lets setup the key players…

Normal World Secure World

TrustZone-capable CPU

ARM TrustZone – Android

95

First OSes: Android OS in the Normal World, and a Trusted OS in the Secure World

Android OS

TrustZone-capable CPU

Trusted OS (OP-TEE, TrustyOS)

Normal World Secure World

Sec.
Monitor

ARM TrustZone – Android

96

To simplify things, lets assume there is one Android app running in Normal World

Android
App

Android OS

TrustZone-capable CPU

Trusted OS (OP-TEE, TrustyOS)

Normal World Secure World

Sec.
Monitor

ARM TrustZone – Android

97

Within the Android OS is the KeyStore API

Android
App

TrustZone-capable CPU

Trusted OS (OP-TEE, TrustyOS)

Normal World Secure World

Sec.
Monitor

Android OS KeyStore API

ARM TrustZone – Android

98

Within the Android OS is the KeyStore API, and a corresponding Keystore TA

Android
App

TrustZone-capable CPU

Trusted OS (OP-TEE, TrustyOS)

Normal World Secure World

Sec.
Monitor

Android OS KeyStore API

KeyStore
TA

ARM TrustZone – Android

99

Lets assume the Android App is currently executing

Android
App

TrustZone-capable CPU

Trusted OS (OP-TEE, TrustyOS)

Normal World Secure World

Sec.
Monitor

Android OS KeyStore API

KeyStore
TA

NS-bit = 1

ARM TrustZone – Android

100

Android App will call the KeyStore API to request a key

Android
App

TrustZone-capable CPU

Trusted OS (OP-TEE, TrustyOS)

Normal World Secure World

Sec.
Monitor

Android OS KeyStore API

KeyStore
TA

Request
Key

NS-bit = 1

ARM TrustZone – Android

101

KeyStore API forwards the request to TEE ….. How??

Android
App

TrustZone-capable CPU

Trusted OS (OP-TEE, TrustyOS)

Normal World Secure World

Sec.
Monitor

Android OS KeyStore API

KeyStore
TA

Request
Key

NS-bit = 1

ARM TrustZone – Android

102

KeyStore API forwards the request to TEE ….. How??

Android
App

TrustZone-capable CPU

Trusted OS (OP-TEE, TrustyOS)

Normal World Secure World

Sec.
Monitor

Android OS KeyStore API

KeyStore
TA

Request
Key

NS-bit = 1

SMC

ARM TrustZone – Android

103

Security Monitor (atomically) switches from Normal World to Secure World

Android
App

TrustZone-capable CPU

Trusted OS (OP-TEE, TrustyOS)

Normal World Secure World

Sec.
Monitor

Android OS KeyStore API

KeyStore
TA

Request
Key

NS-bit = 0

SMC

ARM TrustZone – Android

104

KeyStore TA is invoked. It then generates a key pair (e.g., AES, RSA) – how?

Android
App

TrustZone-capable CPU

Trusted OS (OP-TEE, TrustyOS)

Normal World Secure World

Sec.
Monitor

Android OS KeyStore API

KeyStore
TA

Request
Key

NS-bit = 0

SMC Forward

Invoked

ARM TrustZone – Android

105

KeyStore TA is invoked. It then generates a key pair (e.g., AES, RSA) – how?

Android
App

TrustZone-capable CPU

Trusted OS (OP-TEE, TrustyOS)

Normal World Secure World

Sec.
Monitor

Android OS KeyStore API

KeyStore
TA

Request
Key

NS-bit = 0

SMC Forward

Invoked

Secure
Element

Generate
key

Generate
key

ARM TrustZone – Android

What is the Secure Element?

• Dedicated hardware module

• Similar idea to TPM or HSM (sometimes is that)

• Isolated component designed to handle cryptographic operations

• Very version-specific

• Examples:

• Separate PUF-based logic outside the CPU core but in the SoC (ANI1271):

• StrongBox

106

https://www.silabs.com/documents/public/application-notes/an1271-efr32-secure-key-storage.pdf
https://docs.zebra.com/us/en/mobile-computers/handheld/tc5-series/tc53e-tc58e-prg/c-getting-started/r-tc53x-58x-features/c-tc53e-tc58e-secure-element.html
https://docs.zebra.com/us/en/mobile-computers/handheld/tc5-series/tc53e-tc58e-prg/c-getting-started/r-tc53x-58x-features/c-tc53e-tc58e-secure-element.html

ARM TrustZone – Architecture

Recall:

107

ARM TrustZone – Android

108

The TEE itself could be used for the SE, but less common

Android
App

TrustZone-capable CPU

Trusted OS (OP-TEE, TrustyOS)

Normal World Secure World

Sec.
Monitor

Android OS KeyStore API

KeyStore
TA

Request
Key

NS-bit = 0

SMC Forward

Invoked

Software SE

Generate
key

ARM TrustZone – Android

109

Generates key blob derived from a root key, stored in KS TA private memory

Android
App

TrustZone-capable CPU

Trusted OS (OP-TEE, TrustyOS)

Normal World Secure World

Sec.
Monitor

Android OS KeyStore API

KeyStore
TA

NS-bit = 0 SE root key

derived
blob

derived
blob

This blob can
also be
“wrapped” to
the SE in use

ARM TrustZone – Android

110

Returns a blob handle

Android
App

TrustZone-capable CPU

Trusted OS (OP-TEE, TrustyOS)

Normal World Secure World

Sec.
Monitor

Android OS KeyStore API

KeyStore
TA

NS-bit = 0 SE root key

derived
blob

blob handle

blob handle

ARM TrustZone – Android

111

Atomic context switch, then store blob handle in Android App memory

Android
App

TrustZone-capable CPU

Trusted OS (OP-TEE, TrustyOS)

Normal World Secure World

Sec.
Monitor

Android OS KeyStore API

KeyStore
TA

NS-bit = 1 SE root key

derived
blob

blob handle

blob handle

blob
handle

ARM TrustZone – Android

112

How about using the key? Invoke a KeyStore function, leading to SMC

Android
App

TrustZone-capable CPU

Trusted OS (OP-TEE, TrustyOS)

Normal World Secure World

Sec.
Monitor

Android OS KeyStore API

KeyStore
TA

NS-bit = 1 SE root key

derived
blob

blob
handle

sign(data,
blob_handle)

SMC

ARM TrustZone – Android

113

After being invoked, KeyStore TA retrieves key and performs operation

Android
App

TrustZone-capable CPU

Trusted OS (OP-TEE, TrustyOS)

Normal World Secure World

Sec.
Monitor

Android OS KeyStore API

KeyStore
TA

NS-bit = 0 SE root key

derived
blob

blob
handle

sign(data,
blob_handle)

SMC Forward

invoke

ARM TrustZone – Android

114

After being invoked, KeyStore TA retrieves key and performs operation

Android
App

TrustZone-capable CPU

Trusted OS (OP-TEE, TrustyOS)

Normal World Secure World

Sec.
Monitor

Android OS KeyStore API

KeyStore
TA

NS-bit = 0 SE root key

derived
blob

blob
handle

Return output

Return output

ARM TrustZone – Android

115

After being invoked, KeyStore TA retrieves key and performs operation

Android
App

TrustZone-capable CPU

Trusted OS (OP-TEE, TrustyOS)

Normal World Secure World

Sec.
Monitor

Android OS KeyStore API

KeyStore
TA

NS-bit = 1 SE root key

derived
blob

blob
handle

Return output

ARM TrustZone – Android

Other features of Android:

• App signing

• Every app must be signed by the developers

• Unsigned apps are rejected by Google play or the package installer

• Biometrics

• Part of tiered authentication model – fingerprint senors

• Relies on the keystore for secure storage

116

ARM TrustZone – Android

Other features of Android:

• Biometrics (continued)

117

ARM TrustZone – Android
Other features of Android:

• App signing

• Every app must be signed by the developers

• Unsigned apps are rejected by Google play or the package installer

• Biometrics

• Part of tiered authentication model – fingerprint senors

• Relies on the keystore for secure storage

• Verified Boot

• Rollback prevention

• Usable security – “Private Space” – sandboxed space with separate install of app
118

Closing thoughts
Various hardware security paradigms:

119

ARM TrustZone

TPM
Intel SGX

Closing thoughts
Various hardware security paradigms:

120

ARM TrustZone

TPM
Intel SGX

We saved the World!

Closing thoughts
Various hardware security paradigms:

121

ARM TrustZone

TPM
Intel SGX

We saved the World!

Hopefully, there
aren’t any problems
with these designs….

That’s all for today!
Coming up….
• Attacks on TPMs and TEEs

Reminders:
• A4 is due on July 25
• Research project proposal

122

https://watssec.github.io/cs453-s25/assignments/a4/
https://watssec.github.io/cs453-s25/assignments/a4/

That’s all for today!
Resources:
• “Demystifying Arm TrustZone” – great one!
• “TrustZone Explained: Architectural Features and Use Cases”
• ARM Docs on TrustZone-A
• Android security resources
• Android KeyStore
• HSE & SoC as SE
• “Safeguarding Crytographic Keys – TEE and Strongbox in Android”
• “Mobile Platform Security”

123

https://dl.acm.org/doi/pdf/10.1145/3291047
https://dl.acm.org/doi/pdf/10.1145/3291047
https://sefcom.asu.edu/publications/trustzone-explained-cic2016.pdf
https://sefcom.asu.edu/publications/trustzone-explained-cic2016.pdf
https://developer.arm.com/Training/TrustZone%20for%20Armv8-A#Technical-Specifications
https://developer.arm.com/Training/TrustZone%20for%20Armv8-A#Technical-Specifications
https://developer.arm.com/Training/TrustZone%20for%20Armv8-A#Technical-Specifications
https://developer.arm.com/Training/TrustZone%20for%20Armv8-A#Technical-Specifications
https://source.android.com/docs/security/features/keystore
https://source.android.com/docs/security/features/keystore
https://source.android.com/docs/security/features/keystore
https://source.android.com/docs/security/features/keystore
https://www.silabs.com/documents/public/application-notes/an1271-efr32-secure-key-storage.pdf
https://www.silabs.com/documents/public/application-notes/an1271-efr32-secure-key-storage.pdf
https://medium.com/@dfs.techblog/safeguarding-cryptographic-keys-implementing-tee-and-strongbox-in-android-applications-7894c800e43e
https://medium.com/@dfs.techblog/safeguarding-cryptographic-keys-implementing-tee-and-strongbox-in-android-applications-7894c800e43e
https://medium.com/@dfs.techblog/safeguarding-cryptographic-keys-implementing-tee-and-strongbox-in-android-applications-7894c800e43e
https://medium.com/@dfs.techblog/safeguarding-cryptographic-keys-implementing-tee-and-strongbox-in-android-applications-7894c800e43e
https://medium.com/@dfs.techblog/safeguarding-cryptographic-keys-implementing-tee-and-strongbox-in-android-applications-7894c800e43e
https://medium.com/@dfs.techblog/safeguarding-cryptographic-keys-implementing-tee-and-strongbox-in-android-applications-7894c800e43e
https://asokan.org/asokan/Padova2014/tutorial-mobileplatsec.pdf
https://asokan.org/asokan/Padova2014/tutorial-mobileplatsec.pdf

124

	Default Section
	Slide 1: Module: Hardware & Mobile Security
	Slide 2: Reminders & Recap
	Slide 3: Today
	Slide 4: ARM Processors
	Slide 5: ARM Processors
	Slide 6: ARM Processors
	Slide 7: ARM TrustZone Overview
	Slide 8: ARM TrustZone Overview
	Slide 9: ARM TrustZone Overview
	Slide 10: ARM TrustZone Overview
	Slide 11: ARM TrustZone Overview
	Slide 12: ARM TrustZone Overview
	Slide 13: ARM TrustZone Overview
	Slide 14: ARM TrustZone Overview
	Slide 15: ARM TrustZone Overview
	Slide 16: ARM TrustZone Overview
	Slide 17: ARM TrustZone Overview
	Slide 18: ARM TrustZone Overview
	Slide 19: ARM TrustZone Overview
	Slide 20: ARM TrustZone Overview
	Slide 21: ARM TrustZone Overview
	Slide 22: ARM TrustZone Overview
	Slide 23: ARM TrustZone Overview
	Slide 24: ARM TrustZone Overview
	Slide 25: ARM TrustZone Overview
	Slide 26: ARM TrustZone Overview
	Slide 27: ARM TrustZone Overview
	Slide 28: ARM TrustZone – Isolation
	Slide 29: ARM TrustZone – Isolation
	Slide 30: ARM TrustZone – Isolation
	Slide 31: ARM TrustZone – Isolation
	Slide 32: ARM TrustZone – Isolation
	Slide 33: ARM TrustZone – Isolation
	Slide 34: ARM TrustZone – Isolation
	Slide 35: ARM TrustZone – Isolation
	Slide 36: ARM TrustZone – Isolation
	Slide 37: ARM TrustZone – Isolation
	Slide 38: ARM TrustZone – Isolation
	Slide 39: ARM TrustZone – Isolation
	Slide 40: ARM TrustZone – Isolation
	Slide 41: ARM TrustZone – Isolation
	Slide 42: ARM TrustZone – Isolation
	Slide 43: ARM TrustZone – Isolation
	Slide 44: ARM TrustZone – Isolation
	Slide 45: ARM TrustZone – Isolation
	Slide 46: ARM TrustZone – Isolation
	Slide 47: ARM TrustZone – Isolation
	Slide 48: ARM TrustZone – Isolation
	Slide 49: ARM TrustZone – Isolation
	Slide 50: ARM TrustZone – Isolation
	Slide 51: ARM TrustZone – Isolation
	Slide 52: ARM TrustZone – Isolation
	Slide 53: ARM TrustZone – Isolation
	Slide 54: ARM TrustZone – Isolation
	Slide 55: ARM TrustZone – Isolation
	Slide 56: ARM TrustZone – Isolation
	Slide 57: ARM TrustZone – Memory Translation
	Slide 58: ARM TrustZone – Isolation
	Slide 59: ARM TrustZone – Isolation
	Slide 60: ARM TrustZone – Isolation
	Slide 61: ARM TrustZone – Isolation
	Slide 62: ARM TrustZone – Isolation
	Slide 63: ARM TrustZone – Isolation
	Slide 64: ARM TrustZone – Isolation
	Slide 65: ARM TrustZone – Isolation
	Slide 66: ARM TrustZone – Isolation
	Slide 67: ARM TrustZone – Isolation
	Slide 68: ARM TrustZone – Isolation
	Slide 69: ARM TrustZone – Isolation
	Slide 70: ARM TrustZone – Isolation
	Slide 71: ARM TrustZone – Isolation
	Slide 72: ARM TrustZone – Isolation
	Slide 73: ARM TrustZone – Isolation
	Slide 74: ARM TrustZone – Isolation
	Slide 75: ARM TrustZone – Isolation
	Slide 76: ARM TrustZone – Isolation
	Slide 77: ARM TrustZone – Isolation
	Slide 78: ARM TrustZone – Isolation
	Slide 79: ARM TrustZone – Isolation
	Slide 80: ARM TrustZone Overview
	Slide 81: ARM TrustZone – SMC
	Slide 82: ARM TrustZone – SMC
	Slide 83: ARM TrustZone – SMC
	Slide 84: ARM TrustZone – SMC
	Slide 85: ARM TrustZone – SMC
	Slide 86: ARM TrustZone – SMC
	Slide 87: ARM TrustZone – Architecture
	Slide 88: ARM TrustZone – Architecture
	Slide 89: ARM TrustZone – Architecture
	Slide 90: ARM TrustZone Overview
	Slide 91: ARM TrustZone – Android
	Slide 92: ARM TrustZone – Android
	Slide 93: ARM TrustZone – Android
	Slide 94: ARM TrustZone -- Android
	Slide 95: ARM TrustZone – Android
	Slide 96: ARM TrustZone – Android
	Slide 97: ARM TrustZone – Android
	Slide 98: ARM TrustZone – Android
	Slide 99: ARM TrustZone – Android
	Slide 100: ARM TrustZone – Android
	Slide 101: ARM TrustZone – Android
	Slide 102: ARM TrustZone – Android
	Slide 103: ARM TrustZone – Android
	Slide 104: ARM TrustZone – Android
	Slide 105: ARM TrustZone – Android
	Slide 106: ARM TrustZone – Android
	Slide 107: ARM TrustZone – Architecture
	Slide 108: ARM TrustZone – Android
	Slide 109: ARM TrustZone – Android
	Slide 110: ARM TrustZone – Android
	Slide 111: ARM TrustZone – Android
	Slide 112: ARM TrustZone – Android
	Slide 113: ARM TrustZone – Android
	Slide 114: ARM TrustZone – Android
	Slide 115: ARM TrustZone – Android
	Slide 116: ARM TrustZone – Android
	Slide 117: ARM TrustZone – Android
	Slide 118: ARM TrustZone – Android
	Slide 119: Closing thoughts
	Slide 120: Closing thoughts
	Slide 121: Closing thoughts
	Slide 122: That’s all for today!
	Slide 123: That’s all for today!
	Slide 124

