
CS 453/698: Software and Systems Security

Meng Xu (University of Waterloo)

Module: An In-depth Study of Memory Errors
Lecture: (casual discussion) memory-safe practices

Spring 2025



Stats Language Hardware

Outline

1 Re-visit the statistics

2 Memory-safe languages

3 Capability Hardware Enhanced RISC Instructions (CHERI)

2 / 22



Stats Language Hardware

Memory errors are prevalent

Source: BlackHat IL 2019 talk by Matt Miller from Microsoft

Around 70% of all the vulnerabilities in Microsoft products addressed through a security update each

year (2006 - 2018) are memory safety issues

3 / 22

https://github.com/microsoft/MSRC-Security-Research/tree/master/presentations/2019_02_BlueHatIL


Stats Language Hardware

Memory errors are prevalent

Source: Chromium Memory Safety Report from Google.

Analysis based on 912 high or critical severity security bugs in Chromium reported in 2015 - 2020
4 / 22

https://www.chromium.org/Home/chromium-security/memory-safety/


Stats Language Hardware

Memory errors are prevalent

Source: Blog post Memory Safe Languages in Android 13 from Google.

Memory safety vulnerabilities disproportionately represent Android’s most severe vulnerabilities
5 / 22

https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html


Stats Language Hardware

Statistics can be misleading...

This is a personal note: one explanation why we have a
disproportionately high number of memory errors reported amongst
all security vulnerabilities is that — we know memory errors too well.

Memory errors have universally accepted definitions (e.g., why the
website is named Stack Overflow?)
- Once you find a memory error, you do not need to diligently argue
that this is a bug and not a feature

Memory errors often lead to a set of known consequences that are
generally considered severe (e.g., data leak or denial-of-service)
- Once you find a memory error, you do not need to construct a
working exploit to justify it

Finding memory errors typically do not require program-specific
domain knowledge (the bug is rooted in C/C++ language
semantics instead of program logic)
- If you have a technique that can find memory errors in one codebase,
you can scale it up to millions of codebases developed in C/C++.

In fact, very few types of vulnerabilities meet these requirements.

6 / 22

https://stackoverflow.com/


Stats Language Hardware

Statistics can be misleading...

This is a personal note: one explanation why we have a
disproportionately high number of memory errors reported amongst
all security vulnerabilities is that — we know memory errors too well.

Memory errors have universally accepted definitions (e.g., why the
website is named Stack Overflow?)
- Once you find a memory error, you do not need to diligently argue
that this is a bug and not a feature

Memory errors often lead to a set of known consequences that are
generally considered severe (e.g., data leak or denial-of-service)
- Once you find a memory error, you do not need to construct a
working exploit to justify it

Finding memory errors typically do not require program-specific
domain knowledge (the bug is rooted in C/C++ language
semantics instead of program logic)
- If you have a technique that can find memory errors in one codebase,
you can scale it up to millions of codebases developed in C/C++.

In fact, very few types of vulnerabilities meet these requirements.

6 / 22

https://stackoverflow.com/


Stats Language Hardware

Statistics can be misleading...

This is a personal note: one explanation why we have a
disproportionately high number of memory errors reported amongst
all security vulnerabilities is that — we know memory errors too well.

Memory errors have universally accepted definitions (e.g., why the
website is named Stack Overflow?)
- Once you find a memory error, you do not need to diligently argue
that this is a bug and not a feature

Memory errors often lead to a set of known consequences that are
generally considered severe (e.g., data leak or denial-of-service)
- Once you find a memory error, you do not need to construct a
working exploit to justify it

Finding memory errors typically do not require program-specific
domain knowledge (the bug is rooted in C/C++ language
semantics instead of program logic)
- If you have a technique that can find memory errors in one codebase,
you can scale it up to millions of codebases developed in C/C++.

In fact, very few types of vulnerabilities meet these requirements.

6 / 22

https://stackoverflow.com/


Stats Language Hardware

Statistics can be misleading...

This is a personal note: one explanation why we have a
disproportionately high number of memory errors reported amongst
all security vulnerabilities is that — we know memory errors too well.

Memory errors have universally accepted definitions (e.g., why the
website is named Stack Overflow?)
- Once you find a memory error, you do not need to diligently argue
that this is a bug and not a feature

Memory errors often lead to a set of known consequences that are
generally considered severe (e.g., data leak or denial-of-service)
- Once you find a memory error, you do not need to construct a
working exploit to justify it

Finding memory errors typically do not require program-specific
domain knowledge (the bug is rooted in C/C++ language
semantics instead of program logic)
- If you have a technique that can find memory errors in one codebase,
you can scale it up to millions of codebases developed in C/C++.

In fact, very few types of vulnerabilities meet these requirements.

6 / 22

https://stackoverflow.com/


Stats Language Hardware

Statistics can be misleading...

This is a personal note: one explanation why we have a
disproportionately high number of memory errors reported amongst
all security vulnerabilities is that — we know memory errors too well.

Memory errors have universally accepted definitions (e.g., why the
website is named Stack Overflow?)
- Once you find a memory error, you do not need to diligently argue
that this is a bug and not a feature

Memory errors often lead to a set of known consequences that are
generally considered severe (e.g., data leak or denial-of-service)
- Once you find a memory error, you do not need to construct a
working exploit to justify it

Finding memory errors typically do not require program-specific
domain knowledge (the bug is rooted in C/C++ language
semantics instead of program logic)
- If you have a technique that can find memory errors in one codebase,
you can scale it up to millions of codebases developed in C/C++.

In fact, very few types of vulnerabilities meet these requirements. 6 / 22

https://stackoverflow.com/


Stats Language Hardware

Gradual adoption of memory-safe languages

Source: Blog post Memory Safe Languages in Android 13 from Google.

Number of memory safety vulnerabilities starts to decrease with the adoption of memory-safe languages
7 / 22

https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html


Stats Language Hardware

Gradual adoption of memory-safe languages

Source: Blog post Memory Safe Languages in Android 13 from Google.

Number of memory safety vulnerabilities correlates to the portion of unsafe code
8 / 22

https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html


Stats Language Hardware

Gradual adoption of memory-safe languages

Source: Blog post Memory Safe Languages in Android 13 from Google.

Rust on the rise in Android native implementations
9 / 22

https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html


Stats Language Hardware

Looking into the future

White House Press Release: Future Software Should Be Memory
Safe on February 26, 2024.

ONCD Technical Report: Back to the Building Blocks: A Path
Toward Secure and Measurable Software published in February 2024.

10 / 22

https://www.whitehouse.gov/oncd/briefing-room/2024/02/26/press-release-technical-report/
https://www.whitehouse.gov/oncd/briefing-room/2024/02/26/press-release-technical-report/
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf


Stats Language Hardware

Outline

1 Re-visit the statistics

2 Memory-safe languages

3 Capability Hardware Enhanced RISC Instructions (CHERI)

11 / 22



Stats Language Hardware

(Potentially incomplete) list of memory-safe languages

Based on technical report “The case for memory-safe roadmaps”
from NSA:

C#

Go

Java

Python

Rust

Swift

12 / 22

https://media.defense.gov/2023/Dec/06/2003352724/-1/-1/0/THE-CASE-FOR-MEMORY-SAFE-ROADMAPS-TLP-CLEAR.PDF


Stats Language Hardware

Java/Python

Q: How is spatial safety guaranteed?

An example of the famous ArrayIndexOutOfBoundsException

1 String[] names = { "tom", "bob", "harry" };
2 for (int i = 0; i <= names.length; i++) {
3 System.out.println(names[i]);
4 }

The pattern looks similar to what happens in C when you have an
out-of-bound memory access, but it is not a memory error in Java —
Why?

13 / 22



Stats Language Hardware

Java/Python

Q: How is spatial safety guaranteed?

An example of the famous ArrayIndexOutOfBoundsException

1 String[] names = { "tom", "bob", "harry" };
2 for (int i = 0; i <= names.length; i++) {
3 System.out.println(names[i]);
4 }

The pattern looks similar to what happens in C when you have an
out-of-bound memory access, but it is not a memory error in Java —
Why?

13 / 22



Stats Language Hardware

How does Java VM track bounds

The key answer is: Java does not allow arbitrary casting.

Object

Object[]class A class B

int[]A[] B[]class A1 class B1

A1[] B1[]

Upward cast is always allowed.

Downward cast may be allowed.

Re-interpret cast is never allowed.
14 / 22



Stats Language Hardware

Java/Python

Q: How is temporal safety guaranteed?

A: Garbage collection

Automatically managed by the Java VM

Identifies which objects are still in use (referenced) and which are
not in use (unreferenced)

Triggered upon certain conditions, such as

- setting a reference to null
- re-assigning a new object to a reference

15 / 22



Stats Language Hardware

Java/Python

Q: How is temporal safety guaranteed?

A: Garbage collection

Automatically managed by the Java VM

Identifies which objects are still in use (referenced) and which are
not in use (unreferenced)

Triggered upon certain conditions, such as

- setting a reference to null
- re-assigning a new object to a reference

15 / 22



Stats Language Hardware

(Safe) Rust

Q: How is spatial safety guaranteed?

A: Bounds check

Q: How is temporal safety guaranteed?

A: Several ways, including

- Linear ownership transfer

- Lifetime annotation

- Reference counting

16 / 22



Stats Language Hardware

(Safe) Rust

Q: How is spatial safety guaranteed?

A: Bounds check

Q: How is temporal safety guaranteed?

A: Several ways, including

- Linear ownership transfer

- Lifetime annotation

- Reference counting

16 / 22



Stats Language Hardware

(Safe) Rust

Q: How is spatial safety guaranteed?

A: Bounds check

Q: How is temporal safety guaranteed?

A: Several ways, including

- Linear ownership transfer

- Lifetime annotation

- Reference counting

16 / 22



Stats Language Hardware

(Safe) Rust

Q: How is spatial safety guaranteed?

A: Bounds check

Q: How is temporal safety guaranteed?

A: Several ways, including

- Linear ownership transfer

- Lifetime annotation

- Reference counting

16 / 22



Stats Language Hardware

Outline

1 Re-visit the statistics

2 Memory-safe languages

3 Capability Hardware Enhanced RISC Instructions (CHERI)

17 / 22



Stats Language Hardware

Re-defining pointers

A pointer is not only an N -bit value representing a memory address,
rather, it is a capability granting certain permissions to access a
restrictive range in the memory address space.

18 / 22



Stats Language Hardware

CHERI memory capability

A “pointer”, or rather, a memory capability, in the view of the
CHERI Morello architecture (source of image: Pawel Zalewski’s blog post).

19 / 22

https://developer.arm.com/documentation/ddi0606/latest
https://www.thegoodpenguin.co.uk/blog/introducing-arm-morello-cheri-architecture/


Stats Language Hardware

CHERI basic idea

Q: What will happen?

20 / 22



Stats Language Hardware

CHERI basic idea

Q: What will happen?

20 / 22



Stats Language Hardware

CHERI basic idea

Q: What will happen?

20 / 22



Stats Language Hardware

CHERI basic idea

Q: What will happen?

20 / 22



Stats Language Hardware

CHERI software stack

Completely re-vamped software stack:

Compilers: custom-made Clang/LLVM

Operating systems: hand-tuned FreeBSD, FreeRTOS

Applications: ported WebKit, OpenSSH, and PostgreSQL

21 / 22



Stats Language Hardware

⟨ End ⟩

22 / 22


	Re-visit the statistics
	Memory-safe languages
	Capability Hardware Enhanced RISC Instructions (CHERI)

