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Memory errors are prevalent

Source: BlackHat IL 2019 talk by Matt Miller from Microsoft

Around 70% of all the vulnerabilities in Microsoft products addressed through a security update each

year (2006 - 2018) are memory safety issues
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https://github.com/microsoft/MSRC-Security-Research/tree/master/presentations/2019_02_BlueHatIL
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Memory errors are prevalent

Source: Chromium Memory Safety Report from Google.

Analysis based on 912 high or critical severity security bugs in Chromium reported in 2015 - 2020
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https://www.chromium.org/Home/chromium-security/memory-safety/
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Memory errors are prevalent

Source: Blog post Memory Safe Languages in Android 13 from Google.

Memory safety vulnerabilities disproportionately represent Android’s most severe vulnerabilities
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https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
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Memory errors can lead to severe consequences

Heartbleed Vulnerability
(CVE-2014-0610)

A security bug in version 1.0.1 of
OpenSSL, which is a widely used
implementation of the Transport Layer
Security (TLS) protocol

It was introduced into OpenSSL in 2012
and publicly disclosed in April 2014

At the time of disclosure, some 17%
(around half a million) of the Internet’s
secure web servers certified by trusted
authorities were believed to be vulnerable
to the attack
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Memory errors can lead to severe consequences

Heartbleed Vulnerability
(CVE-2014-0610)

The Canada Revenue Agency (CRA)
reported a theft of social insurance
numbers belonging to 900 taxpayers, and
said that they were accessed through an
exploit of the bug during a 6-hour period
on 8 April 2014.

After the discovery of the attack, the
agency shut down its website and
extended the taxpayer filing deadline
from 30 April to 5 May.

On 16 April, the RCMP announced they
had charged a computer science student
in relation to the theft with unauthorized
use of a computer and mischief in
relation to data.
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Heartbleed explanation

Source: https://imgs.xkcd.com/comics/heartbleed explanation.png
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Exploitation of a stack overflow

Demo
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Stack layout (Linux x86-64 convention)

1 long foo(
2 long a, long b, long c,
3 long d, long e, long f,
4 long g, long h)
5 {
6 long xx = a * b * c;
7 long yy = d + e + f;
8 long zz = bar(xx, yy, g + h);
9 return zz + 20;

10 }

h
g

return address

saved rbp

xx
yy

zz

High address

Low address

RBP + 24

RBP + 16

RBP + 8

RBP

RBP - 8

RBP - 16

RBP - 24

Argument a to f passed by registers.
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Exploitation of a use-after-free

Demo
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Heap: what happens after malloc()?

chunk size | used

user data

Low address Heap base pointer

p1 = malloc(50)

chunk size | used

user data
p2 = malloc(35)

chunk size | used

user data

p3 = malloc(64)

chunk size | used
user data

p4 = malloc(27)

⟨top of heap⟩

High address
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Heap: what happens after free()?

chunk size | used

user data

Low address Heap base pointer

p1 = malloc(50)

chunk size | used

user data
p2 = malloc(35); free(p2)

chunk size | used

user data

p3 = malloc(64)

chunk size | used
user data

p4 = malloc(27)

⟨top of heap⟩

High address
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Heap: what happens after free()?

chunk size | used

user data

Low address Heap base pointer

p1 = malloc(50)

chunk size | free

user data
p2 = malloc(35); free(p2)

chunk size | used

user data

p3 = malloc(64)

chunk size | used
user data

p4 = malloc(27)

⟨top of heap⟩

High address
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Real-world heap manager

For implementation details of the glibc1 memory allocator, refer to
the article from Azeria Labs.

1GNU C library
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https://azeria-labs.com/heap-exploitation-part-1-understanding-the-glibc-heap-implementation/
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For exploitation of memory errors

Smashing The Stack For Fun And Profit

How2Heap — Educational Heap Exploitation
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https://insecure.org/stf/smashstack.html
https://github.com/shellphish/how2heap
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Bonus: memory layout

Q: What about stacks and heap in multi-threaded programs?

A: Stack and heap are treated different in multi-threading:

each thread has its own stack

all threads in the same process share the heap and global data
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A quick recap

This presentation is about memory corruption, a.k.a.,

memory errors, or

violations of memory safety properties, or

unsafe programs

A program is memory safe if it is free of memory errors.
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Introduction Demo Definition Case Study

Definition: safety

Q: What is “safe” in memory safety?

Observation 1: At runtime, memory is a pool of objects

Observation 2: Each object has known and limited size and lifetime

Observation 3: Once allocated, the size of an object never changes

Observation 4: A memory access is always object-oriented, i.e.

Memory read: (object_id, offset, length)

Memory write: (object_id, offset, length, value)

Wait..., in C/C++, pointers are just 32/64-bit integers. I can do:
int *p = 0xdeadbeef; int v = *p; Which object do I refer to
here?
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Definition: safety

Q: What is “safety” in memory safety?

At any point of time during the program execution,
for any object in memory, we know its
(object_id, size [int], alive [bool])

At the same time, for each memory access, we know:

Memory read: (object_id, offset [int], length [int])

Memory write: (object_id, offset [int], length [int], _)
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Definition: spatial safety

At any point of time during the program execution,
for any object in memory, we know its
(object_id, size [int], alive [bool])

At the same time, for each memory access, we know:

Memory read: (object_id, offset [int], length [int])

Memory write: (object_id, offset [int], length [int], _)

It is a violation of spatial safety if:

offset + length >= size or

offset < 0
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Example: spatial safety violations

1 int foo(int x) {
2 int arr[16] = {0};
3 return arr[x];
4 }

1 long foo() {
2 int a = 0;
3 return *(long *)(&a);
4 }
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Introduction Demo Definition Case Study

Definition: NULL-pointer dereference

1 int foo(int *p) {
2 // it is possible that p == NULL
3 return *p + 42;
4 }

NULL-pointer dereference is sometimes considered as undefined
behavior — meaning, its behavior is not given in the C language
specification, although most operating systems chooses to panic the
program on such behavior.
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Definition: NULL-pointer dereference

At any point of time during the program execution,
for any object in memory, we know its
(object_id ̸= 0, size [int], alive [bool])

At the same time, for each memory access, we know:

Memory read: (object_id, offset [int], length [int])

Memory write: (object_id, offset [int], length [int], _)

It is a NULL-pointer dereference if

object_id == 0
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Definition: temporal safety

At any point of time during the program execution,
for any object in memory, we know its
(object_id, size [int], alive [bool])

At the same time, for each memory access, we know:

Memory read: (object_id, offset [int], length [int])

Memory write: (object_id, offset [int], length [int], _)

Memory free: (object_id)

It is a violation of temporal safety if:

!alive
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Example: temporal safety violations

1 int foo() {
2 int *p = malloc(sizeof(int));
3 *p = 42;
4 free(p);
5 return *p;
6 }

1 int *ptr;
2

3 void foo() {
4 int p = 100;
5 ptr = &p;
6 }
7 int bar() {
8 return *ptr;
9 }

1 int foo() {
2 int *p = malloc(sizeof(int));
3 *p = 42;
4 free(p);
5 free(p);
6 return *p;
7 }
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Definition: temporal safety (revisited)

At any point of time during the program execution,
for any object in memory, we know its
(object_id, size [int], status [alloc|init|dead])

At the same time, for each memory access, we know:

Memory read: (object_id, offset [int], length [int])

Memory write: (object_id, offset [int], length [int], _)

Memory free: (object_id)

It is a violation of temporal safety if:

Read: status != init

Write: status == dead

Free: status == dead
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Example: temporal safety violations

1 int foo() {
2 int p;
3 return p;
4 // what is the value returned?
5 }

1 int foo() {
2 int *p = malloc(sizeof(int));
3 return *p;
4 // what is the value returned?
5 }
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Definition: memory leak

At any point of time during the program execution,
for any object in memory, we know its
(object_id, size [int], status [alloc|init|dead])

At the same time, for each memory access, we know:

Memory read: (object_id, offset [int], length [int])

Memory write: (object_id, offset [int], length [int], _)

Memory free: (object_id)

It is a memory leak if exists one object_id whose:

status != dead
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Example: memory leak

1 int foo() {
2 int *p = malloc(sizeof(int));
3 int *q = malloc(sizeof(int));
4 *p = 42;
5 free(q);
6 return *p;
7 }
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Heartbleed vulnerability I

1 int dtls1_process_heartbeat(SSL *s) {
2 unsigned char *p = &s->s3->rrec.data[0], *pl;
3 unsigned short hbtype;
4 unsigned int payload;
5 unsigned int padding = 16; /* Use minimum padding */
6

7 /* Read type and payload length first */
8 hbtype = *p++;
9 n2s(p, payload);

10 pl = p;
11

12 /* ... redacted ... */
13

14 if (hbtype == TLS1_HB_REQUEST) {
15 unsigned char *buffer, *bp;
16

17 /* Allocate memory for the response */
18 buffer = OPENSSL_malloc(1 + 2 + payload + padding);
19 bp = buffer;
20

21 /* Enter response type, length and copy payload */
22 *bp++ = TLS1_HB_RESPONSE;
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Heartbleed vulnerability II

23 s2n(payload, bp);
24 memcpy(bp, pl, payload);
25

26 /* Random padding */
27 RAND_pseudo_bytes(bp, padding);
28

29 /* Send out the response */
30 r = dtls1_write_bytes(
31 s, TLS1_RT_HEARTBEAT, buffer, 3 + payload + padding
32 );
33

34 /* ... redacted ... */
35

36 /* Clean-up used resources */
37 OPENSSL_free(buffer);
38 return r;
39 }
40

41 else { /* ... redacted ... */ }
42 }
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Patch for the Heartbleed vulnerability I

1 diff --git a/ssl/d1_both.c b/ssl/d1_both.c
2 index 7a5596a6b3..2e8cf681ed 100644
3 @@ -1459,26 +1459,36 @@ dtls1_process_heartbeat(SSL *s)
4 unsigned int payload;
5 unsigned int padding = 16; /* Use minimum padding */
6

7 - /* Read type and payload length first */
8 - hbtype = *p++;
9 - n2s(p, payload);

10 - pl = p;
11 -
12 if (s->msg_callback)
13 s->msg_callback(0, s->version, TLS1_RT_HEARTBEAT,
14 &s->s3->rrec.data[0], s->s3->rrec.length,
15 s, s->msg_callback_arg);
16

17 + /* Read type and payload length first */
18 + if (1 + 2 + 16 > s->s3->rrec.length)
19 + return 0; /* silently discard */
20 + hbtype = *p++;
21 + n2s(p, payload);
22 +
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Patch for the Heartbleed vulnerability II

23 + if (1 + 2 + payload + 16 > s->s3->rrec.length)
24 + return 0; /* silently discard per RFC 6520 sec. 4 */
25 + pl = p;
26 +
27 if (hbtype == TLS1_HB_REQUEST)
28 {
29 unsigned char *buffer, *bp;
30 + unsigned int write_length = 1 /* heartbeat type */ +
31 + 2 /* heartbeat length */ + payload + padding;
32 int r;
33

34 + if (write_length > SSL3_RT_MAX_PLAIN_LENGTH)
35 + return 0;
36 +
37 /* Allocate memory for the response, size is 1 byte
38 * message type, plus 2 bytes payload length, plus
39 * payload, plus padding
40 */
41 - buffer = OPENSSL_malloc(1 + 2 + payload + padding);
42 + buffer = OPENSSL_malloc(write_length);
43 bp = buffer;
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⟨ End ⟩
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