
CS 453/698: Software and Systems Security

Meng Xu (University of Waterloo)

Module: An In-depth Study of Memory Errors
Lecture: Exploit mitigation

Spring 2025

Introduction PoLP Refmon Entropy

Outline

1 Introduction: what is mitigation?

2 Principle of least privileges (PoLP)

3 Reference monitoring

4 Moving-target defense

2 / 52

Introduction PoLP Refmon Entropy

Software security landscape

Generally speaking, almost all work in the software security area can
be categorized into four bins:

Vulnerability: Identify a bug in the program that may cause some damage

- f(Code) → Bug

Exploitation: Given a set of bugs, exploit them to achieve a desired goal

- f(Code, {...Bug...}, Goal) → Action

Mitigation: Given a set of bugs and an associated set of exploits, prevent them

- f(Code, {...Bug...}, {...Action...}) → Blockage

Detection: Given a program, check the existence of a specific type of bug

- f(Code,Bug, [Action]) → Signal

Prevention: It is impossible to create a program that has a specific type of bug

3 / 52

Introduction PoLP Refmon Entropy

Themes of mitigation

Principle of least privileges (PoLP)

- reduce permissions unless absolutely needed

Reference monitoring / program shepherding

- keep an eye on the program while it is executing

Moving-target defense

- non-determinism is useful in software security when

* it has no impact on the intended finite state machine BUT
* limits attackers’ abilities to program the weird machine.

4 / 52

Introduction PoLP Refmon Entropy

Themes of mitigation

Principle of least privileges (PoLP)

- reduce permissions unless absolutely needed

Reference monitoring / program shepherding

- keep an eye on the program while it is executing

Moving-target defense

- non-determinism is useful in software security when

* it has no impact on the intended finite state machine BUT
* limits attackers’ abilities to program the weird machine.

4 / 52

Introduction PoLP Refmon Entropy

Themes of mitigation

Principle of least privileges (PoLP)

- reduce permissions unless absolutely needed

Reference monitoring / program shepherding

- keep an eye on the program while it is executing

Moving-target defense

- non-determinism is useful in software security when

* it has no impact on the intended finite state machine BUT
* limits attackers’ abilities to program the weird machine.

4 / 52

Introduction PoLP Refmon Entropy

Themes of mitigation

Principle of least privileges (PoLP)

- reduce permissions unless absolutely needed

Reference monitoring / program shepherding

- keep an eye on the program while it is executing

Moving-target defense
- non-determinism is useful in software security when

* it has no impact on the intended finite state machine BUT
* limits attackers’ abilities to program the weird machine.

4 / 52

Introduction PoLP Refmon Entropy

Outline

1 Introduction: what is mitigation?

2 Principle of least privileges (PoLP)

3 Reference monitoring

4 Moving-target defense

5 / 52

Introduction PoLP Refmon Entropy

DEP a.k.a., W⊕X

DEP – Data Execution Prevention

W⊕X – Write exclusive-or eXecute

You can either write data OR execute code in a memory region,
but never both.

Implementation: gcc -z execstack.

6 / 52

Introduction PoLP Refmon Entropy

DEP a.k.a., W⊕X

DEP – Data Execution Prevention

W⊕X – Write exclusive-or eXecute

You can either write data OR execute code in a memory region,
but never both.

Implementation: gcc -z execstack.

6 / 52

Introduction PoLP Refmon Entropy

DEP a.k.a., W⊕X

DEP – Data Execution Prevention

W⊕X – Write exclusive-or eXecute

You can either write data OR execute code in a memory region,
but never both.

Implementation: gcc -z execstack.

6 / 52

Introduction PoLP Refmon Entropy

Motivation for type-based heap allocation

A more realistic use-after-free (UAF) exploit:

1 struct N {
2 long user;
3 int (*fn)(void);
4 };

1 struct O {
2 int (*oper)(void);
3 long id;
4 };

1 void foo(long user) {
2 struct N *p =
3 malloc(sizeof(struct N));
4

5 p->fn = __safe_function_1;
6 p->user = user;
7

8 /* ... */
9 /* later in the code */

10 /* ... */
11 p->fn();
12 }

1 void bar(long id) {
2 struct O *x =
3 malloc(sizeof(struct O));
4

5 x->oper = __safe_function_2;
6 x->id = id;
7 struct O *q = x;
8 free(x); // q is dangling
9

10 /* later in the code */
11 q->oper();
12 }

7 / 52

Introduction PoLP Refmon Entropy

Motivation for type-based heap allocation

A more realistic use-after-free (UAF) exploit:

1 struct N {
2 long user;
3 int (*fn)(void);
4 };

1 struct O {
2 int (*oper)(void);
3 long id;
4 };

1 void foo(long user) {
2 struct N *p =
3 malloc(sizeof(struct N));
4

5 p->fn = __safe_function_1;
6 p->user = user;
7

8 /* ... */
9 /* later in the code */

10 /* ... */
11 p->fn();
12 }

1 void bar(long id) {
2 struct O *x =
3 malloc(sizeof(struct O));
4

5 x->oper = __safe_function_2;
6 x->id = id;
7 struct O *q = x;
8 free(x); // q is dangling
9

10 /* later in the code */
11 q->oper();
12 }

7 / 52

Introduction PoLP Refmon Entropy

Sample UAF-exploit (continued)

1 {
2 /* from bar(..) */
3 struct O *x =
4 malloc(sizeof(struct O));
5

6 x->oper = __safe_function_2;
7 x->id = id;
8 struct O *q = x;
9 free(x); // q is dangling

10

11 /* from foo(..) */
12 struct N *p =
13 malloc(sizeof(struct N));
14

15 p->fn = __safe_function_1;
16 p->user = user;
17

18 /* from bar(..) */
19 q->oper();
20 }

8 / 52

Introduction PoLP Refmon Entropy

Type-based heap allocation

If a memory address refers to a heap object of type T, it will always
refer to objects of type T, no matter what (e.g., freed and
re-allocated).

NOTE: this does not imply that this memory address will be
assigned to a T * pointer. It can be assigned to a void *, an int *,
or anything.

9 / 52

Introduction PoLP Refmon Entropy

Outline

1 Introduction: what is mitigation?

2 Principle of least privileges (PoLP)

3 Reference monitoring

4 Moving-target defense

10 / 52

Introduction PoLP Refmon Entropy

CFI: introduction

Control-Flow Integrity (CFI) is a classic example of runtime
reference monitor in software security.

CFI is also sometimes referred to as program shepherding

monitoring control flow transfers during program execution to
enforce a security policy — from a paper in USENIX Security’02.

11 / 52

https://www.usenix.org/conference/11th-usenix-security-symposium/secure-execution-program-shepherding

Introduction PoLP Refmon Entropy

CFI: introduction

Control-Flow Integrity (CFI) is a classic example of runtime
reference monitor in software security.

CFI is also sometimes referred to as program shepherding

monitoring control flow transfers during program execution to
enforce a security policy — from a paper in USENIX Security’02.

11 / 52

https://www.usenix.org/conference/11th-usenix-security-symposium/secure-execution-program-shepherding

Introduction PoLP Refmon Entropy

Basic use cases of CFI

1 void f1();
2 void f2();
3 void f3();
4 void f4(int, int);
5

6 void foo(int usr) {
7 void (*func)();
8

9 if (usr == MAGIC)
10 func = f1;
11 else
12 func = f2;
13

14 // forward edge CFI check
15 CHECK_CFI_FORWARD(func);
16 func();
17

18 // backward edge CFI check
19 CHECK_CFI_BACKWARD();
20 }

Option 1: allow all functions

- f1, f2, f3, f4, foo, printf, system, ...

Option 2: allowed only functions defined
in the current module

- f1, f2, f3, f4, foo

Option 3: allow functions with type
signature void (*)()

- f1, f2, f3

Option 4: allow functions whose address
are taken (e.g., assigned)

- f1, f2

12 / 52

Introduction PoLP Refmon Entropy

Basic use cases of CFI

1 void f1();
2 void f2();
3 void f3();
4 void f4(int, int);
5

6 void foo(int usr) {
7 void (*func)();
8

9 if (usr == MAGIC)
10 func = f1;
11 else
12 func = f2;
13

14 // forward edge CFI check
15 CHECK_CFI_FORWARD(func);
16 func();
17

18 // backward edge CFI check
19 CHECK_CFI_BACKWARD();
20 }

Option 1: allow all functions

- f1, f2, f3, f4, foo, printf, system, ...

Option 2: allowed only functions defined
in the current module

- f1, f2, f3, f4, foo

Option 3: allow functions with type
signature void (*)()

- f1, f2, f3

Option 4: allow functions whose address
are taken (e.g., assigned)

- f1, f2

12 / 52

Introduction PoLP Refmon Entropy

Basic use cases of CFI

1 void f1();
2 void f2();
3 void f3();
4 void f4(int, int);
5

6 void foo(int usr) {
7 void (*func)();
8

9 if (usr == MAGIC)
10 func = f1;
11 else
12 func = f2;
13

14 // forward edge CFI check
15 CHECK_CFI_FORWARD(func);
16 func();
17

18 // backward edge CFI check
19 CHECK_CFI_BACKWARD();
20 }

Option 1: allow all functions

- f1, f2, f3, f4, foo, printf, system, ...

Option 2: allowed only functions defined
in the current module

- f1, f2, f3, f4, foo

Option 3: allow functions with type
signature void (*)()

- f1, f2, f3

Option 4: allow functions whose address
are taken (e.g., assigned)

- f1, f2

12 / 52

Introduction PoLP Refmon Entropy

Basic use cases of CFI

1 void f1();
2 void f2();
3 void f3();
4 void f4(int, int);
5

6 void foo(int usr) {
7 void (*func)();
8

9 if (usr == MAGIC)
10 func = f1;
11 else
12 func = f2;
13

14 // forward edge CFI check
15 CHECK_CFI_FORWARD(func);
16 func();
17

18 // backward edge CFI check
19 CHECK_CFI_BACKWARD();
20 }

Option 1: allow all functions

- f1, f2, f3, f4, foo, printf, system, ...

Option 2: allowed only functions defined
in the current module

- f1, f2, f3, f4, foo

Option 3: allow functions with type
signature void (*)()

- f1, f2, f3

Option 4: allow functions whose address
are taken (e.g., assigned)

- f1, f2

12 / 52

Introduction PoLP Refmon Entropy

Basic use cases of CFI

1 void f1();
2 void f2();
3 void f3();
4 void f4(int, int);
5

6 void foo(int usr) {
7 void (*func)();
8

9 if (usr == MAGIC)
10 func = f1;
11 else
12 func = f2;
13

14 // forward edge CFI check
15 CHECK_CFI_FORWARD(func);
16 func();
17

18 // backward edge CFI check
19 CHECK_CFI_BACKWARD();
20 }

Option 1: allow all functions

- f1, f2, f3, f4, foo, printf, system, ...

Option 2: allowed only functions defined
in the current module

- f1, f2, f3, f4, foo

Option 3: allow functions with type
signature void (*)()

- f1, f2, f3

Option 4: allow functions whose address
are taken (e.g., assigned)

- f1, f2

12 / 52

Introduction PoLP Refmon Entropy

Example: Microsoft Return-flow Guard (RFG)

Illustration taken from Microsoft Talk: The Evolution of CFI Attacks and Defenses

13 / 52

https://github.com/microsoft/MSRC-Security-Research/tree/master/presentations/2018_02_OffensiveCon

Introduction PoLP Refmon Entropy

Back-edge protection: shadow stack

Copyright: Intel 14 / 52

Introduction PoLP Refmon Entropy

CET: shadow stack

For every regular stack CET adds a shadow stack region, which is
indexed via a new register %ssp.

Regular memory stores (executed from any ring) are not allowed
in shadow stack region

When enabled,

Each time a call instruction gets executed, in addition to the
return address being pushed onto the regular stack, a copy of it is
also pushed (automatically) onto the shadow stack.

Each time a ret instruction gets executed, the return addresses
pointed by %rsp and %ssp are (automatically) popped from the
two stacks, and their values are compared together.

15 / 52

Introduction PoLP Refmon Entropy

CET: Indirect Branch Tracking (IBT)

CET introduces a new (4-byte) instruction, i.e., endbr, which
becomes the only allowed target of indirect call/jmp instructions.

In other words, forward-edge transfers via (indirect) call or jmp
instructions are pinned to code locations that are “marked” with an
endbr; else, an exception (#CP) is raised.

16 / 52

Introduction PoLP Refmon Entropy

IBT example

1 void main() {
2 int (*f) {};
3 f = foo;
4 f();
5 }
6

7 int foo() {
8 return 0;
9 }

1 <main>:
2 movq $0x4004fb, -8(%rbp)
3 mov -8(%rbp), %rdx
4 call *%rdx
5 :
6 retq
7

8 <foo>:
9 endbr64

10 :
11 mov rax, 0
12 :
13 retq

17 / 52

Introduction PoLP Refmon Entropy

IBT example

1 void main() {
2 int (*f) {};
3 int (*g) {};
4 f = foo;
5 g = bar;
6 f();
7 g();
8 }
9

10 int foo() {
11 return 0;
12 }
13

14 int bar() {
15 return 1;
16 }

1 <main>:
2 movq $0x4004fb, -16(%rbp)
3 mov -16(%rbp), %rdx
4 call *%rdx
5 mov -8(%rbp), %rdx
6 call *%rdx
7 :
8 retq
9

10 <foo>:
11 endbr64
12 :
13 mov rax, 0
14 :
15 retq
16

17 <bar>:
18 endbr64
19 :
20 mov rax, 1
21 :
22 retq

18 / 52

Introduction PoLP Refmon Entropy

Security boundaries of CFI-protected programs

Figure from a paper published in ACM CCS’20

19 / 52

https://dl.acm.org/doi/pdf/10.1145/3372297.3417867

Introduction PoLP Refmon Entropy

Pointer integrity

Goal: ensures pointers in memory remain unchanged.

- i.e., the value of the pointer remains unchanged, not the memory
content referred to by this pointer.

- Perfect code pointer integrity implies control-flow integrity (CFI).

- Data pointer integrity is also important (e.g., against data-only
attacks and data-oriented programming) and can be (partially)
achieved via Pointer Authentication.

20 / 52

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-kuznetsov.pdf

Introduction PoLP Refmon Entropy

Pointer integrity

Goal: ensures pointers in memory remain unchanged.

- i.e., the value of the pointer remains unchanged, not the memory
content referred to by this pointer.

- Perfect code pointer integrity implies control-flow integrity (CFI).

- Data pointer integrity is also important (e.g., against data-only
attacks and data-oriented programming) and can be (partially)
achieved via Pointer Authentication.

20 / 52

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-kuznetsov.pdf

Introduction PoLP Refmon Entropy

Pointer integrity

Goal: ensures pointers in memory remain unchanged.

- i.e., the value of the pointer remains unchanged, not the memory
content referred to by this pointer.

- Perfect code pointer integrity implies control-flow integrity (CFI).

- Data pointer integrity is also important (e.g., against data-only
attacks and data-oriented programming) and can be (partially)
achieved via Pointer Authentication.

20 / 52

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-kuznetsov.pdf

Introduction PoLP Refmon Entropy

Pointer integrity

Goal: ensures pointers in memory remain unchanged.

- i.e., the value of the pointer remains unchanged, not the memory
content referred to by this pointer.

- Perfect code pointer integrity implies control-flow integrity (CFI).

- Data pointer integrity is also important (e.g., against data-only
attacks and data-oriented programming) and can be (partially)
achieved via Pointer Authentication.

20 / 52

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-kuznetsov.pdf

Introduction PoLP Refmon Entropy

Overview of Arm Pointer Authentication (PA)

Available since Armv8.3-A instruction set architecture (ISA) when
the processor executes in 64-bit Arm state (AArch64)

PA consists of a set of instructions for creating and authenticating
pointer authentication codes (PACs).

21 / 52

Introduction PoLP Refmon Entropy

PAC details

Each PAC is derived from
- A pointer value

* an N-bit memory address

- A 64-bit context value (modifier)

* doesn’t need to secret, as long as it provides enough entropy

- A 128-bit secret key

* held in system registers, set by the kernel per each process,
* can be used, but cannot be read/written by userspace

PAC essentially a key-ed message authentication code (MAC)
where the MAC algorithm can be implementation defined

- by default, it is QARMA

Instructions hide the algorithm details (sign + authenticate)

22 / 52

https://eprint.iacr.org/2016/444.pdf

Introduction PoLP Refmon Entropy

PAC details

Each PAC is derived from
- A pointer value

* an N-bit memory address

- A 64-bit context value (modifier)

* doesn’t need to secret, as long as it provides enough entropy

- A 128-bit secret key

* held in system registers, set by the kernel per each process,
* can be used, but cannot be read/written by userspace

PAC essentially a key-ed message authentication code (MAC)
where the MAC algorithm can be implementation defined

- by default, it is QARMA

Instructions hide the algorithm details (sign + authenticate)

22 / 52

https://eprint.iacr.org/2016/444.pdf

Introduction PoLP Refmon Entropy

PAC details

Each PAC is derived from
- A pointer value

* an N-bit memory address

- A 64-bit context value (modifier)

* doesn’t need to secret, as long as it provides enough entropy

- A 128-bit secret key

* held in system registers, set by the kernel per each process,
* can be used, but cannot be read/written by userspace

PAC essentially a key-ed message authentication code (MAC)
where the MAC algorithm can be implementation defined

- by default, it is QARMA

Instructions hide the algorithm details (sign + authenticate)

22 / 52

https://eprint.iacr.org/2016/444.pdf

Introduction PoLP Refmon Entropy

Example: PA-based return address signing

Deployed as -msign-return-address in GCC and LLVM/Clang

23 / 52

Introduction PoLP Refmon Entropy

Outline

1 Introduction: what is mitigation?

2 Principle of least privileges (PoLP)

3 Reference monitoring

4 Moving-target defense

24 / 52

Introduction PoLP Refmon Entropy

Why entropy in security?

Nondeterminism is useful in software security when

it has no impact on the intended finite state machine BUT

limits attackers’ abilities to program the weird machine.

In the rest of this lecture: we will examine some standard /
deployed practices of safely introducing nondeterminism to boost
system and software security.

25 / 52

Introduction PoLP Refmon Entropy

Why entropy in security?

Nondeterminism is useful in software security when

it has no impact on the intended finite state machine BUT

limits attackers’ abilities to program the weird machine.

In the rest of this lecture: we will examine some standard /
deployed practices of safely introducing nondeterminism to boost
system and software security.

25 / 52

Introduction PoLP Refmon Entropy

Recap: stack overflow

1 int main() {
2 char buf[16];
3 scanf("%s", buf);
4 }

return address

frame pointer

buf

(16 bytes)

address of buf

address of "%s"

return address

frame pointer

...

high address

...

low address

26 / 52

Introduction PoLP Refmon Entropy

Stack canary intuition

1 int main() {
2 char buf[16];
3 scanf("%s", buf);
4 }

On function entry,
push canary value
X onto stack.

On function return,
check canary value
is still X.

return address

frame pointer

buf

(16 bytes)

address of buf

address of "%s"

return address

frame pointer

...

high address

...

low address

return address

frame pointer

canary

buf

(16 bytes)

address of buf

address of "%s"

return address

frame pointer

...

high address

...

low address

27 / 52

Introduction PoLP Refmon Entropy

Stack canary intuition

1 int main() {
2 char buf[16];
3 scanf("%s", buf);
4 }

On function entry,
push canary value
X onto stack.

On function return,
check canary value
is still X.

return address

frame pointer

buf

(16 bytes)

address of buf

address of "%s"

return address

frame pointer

...

high address

...

low address

return address

frame pointer

canary

buf

(16 bytes)

address of buf

address of "%s"

return address

frame pointer

...

high address

...

low address

27 / 52

Introduction PoLP Refmon Entropy

Stack canary intuition

1 int main() {
2 char buf[16];
3 scanf("%s", buf);
4 }

On function entry,
push canary value
X onto stack.

On function return,
check canary value
is still X.

return address

frame pointer

buf

(16 bytes)

address of buf

address of "%s"

return address

frame pointer

...

high address

...

low address

return address

frame pointer

canary

buf

(16 bytes)

address of buf

address of "%s"

return address

frame pointer

...

high address

...

low address

27 / 52

Introduction PoLP Refmon Entropy

Original use of canary

Figure: Canaries in coal-mining. Credits / Trademark: Alamy Stock Photo

28 / 52

Introduction PoLP Refmon Entropy

The default implementation in GCC

1 int main() {
2 char buf[16];
3 scanf("%s", buf);
4 }

1 extern uintptr_t __stack_chk_guard;
2 noreturn void __stack_chk_fail(void);
3

4 int main() {
5 uintptr_t canary = __stack_chk_guard;
6

7 char buf[16];
8 scanf("%s", buf);
9

10 if ((canary = canary ˆ __stack_chk_guard) != 0) {
11 __stack_chk_fail();
12 }
13 }

The __stack_chk_guard and
__stack_chk_fail symbols are normally
supplied by a GCC library called libssp.

You also have the option of specifying your
own value for stack canaries.

29 / 52

Introduction PoLP Refmon Entropy

The default implementation in GCC

1 int main() {
2 char buf[16];
3 scanf("%s", buf);
4 }

1 extern uintptr_t __stack_chk_guard;
2 noreturn void __stack_chk_fail(void);
3

4 int main() {
5 uintptr_t canary = __stack_chk_guard;
6

7 char buf[16];
8 scanf("%s", buf);
9

10 if ((canary = canary ˆ __stack_chk_guard) != 0) {
11 __stack_chk_fail();
12 }
13 }

The __stack_chk_guard and
__stack_chk_fail symbols are normally
supplied by a GCC library called libssp.

You also have the option of specifying your
own value for stack canaries.

29 / 52

Introduction PoLP Refmon Entropy

Design choices of stack canaries

Which value should we use as canary?

- deterministic? secret? random?

What is the granularity of the canary invocation?

- per function? per execution?

When to do the integrity check?

- on function return? is that enough?

How much randomness is needed?

- 1 byte? 8 bytes? 64 bytes?

30 / 52

Introduction PoLP Refmon Entropy

Design choices of stack canaries

Which value should we use as canary?

- deterministic? secret? random?

What is the granularity of the canary invocation?

- per function? per execution?

When to do the integrity check?

- on function return? is that enough?

How much randomness is needed?

- 1 byte? 8 bytes? 64 bytes?

30 / 52

Introduction PoLP Refmon Entropy

Design choices of stack canaries

Which value should we use as canary?

- deterministic? secret? random?

What is the granularity of the canary invocation?

- per function? per execution?

When to do the integrity check?

- on function return? is that enough?

How much randomness is needed?

- 1 byte? 8 bytes? 64 bytes?

30 / 52

Introduction PoLP Refmon Entropy

Design choices of stack canaries

Which value should we use as canary?

- deterministic? secret? random?

What is the granularity of the canary invocation?

- per function? per execution?

When to do the integrity check?

- on function return? is that enough?

How much randomness is needed?

- 1 byte? 8 bytes? 64 bytes?

30 / 52

Introduction PoLP Refmon Entropy

Design choices of stack canaries

Which value should we use as canary?

- deterministic? secret? random?

What is the granularity of the canary invocation?

- per function? per execution?

When to do the integrity check?

- on function return? is that enough?

How much randomness is needed?

- 1 byte? 8 bytes? 64 bytes?

30 / 52

Introduction PoLP Refmon Entropy

Limitations of stack canary

Vulnerable to information leak

- e.g., using a buffer over read to retrieve the canary value

Limited protection for frame pointer and return address only

- other stack variables are not protected

Unable to defend against arbitrary writes

- i.e., non-continuous overrides

31 / 52

Introduction PoLP Refmon Entropy

Limitations of stack canary

Vulnerable to information leak

- e.g., using a buffer over read to retrieve the canary value

Limited protection for frame pointer and return address only

- other stack variables are not protected

Unable to defend against arbitrary writes

- i.e., non-continuous overrides

31 / 52

Introduction PoLP Refmon Entropy

Limitations of stack canary

Vulnerable to information leak

- e.g., using a buffer over read to retrieve the canary value

Limited protection for frame pointer and return address only

- other stack variables are not protected

Unable to defend against arbitrary writes

- i.e., non-continuous overrides

31 / 52

Introduction PoLP Refmon Entropy

Randomize the addresses

ASLR — Address Space Layout Randomization, is a system-level
protection that randomly arranges the address space positions of key
data areas of a process, including the base of the executable and the
positions of the stack, heap and libraries.

PIE — Position Independent Executable, is a body of machine code
that executes properly regardless of its absolute address. This is also
known as position-independent code (PIC).

32 / 52

Introduction PoLP Refmon Entropy

Base case: static program

Env

Stack

Heap

.bss + .data

.text

low address

high address

Fixed address

Fixed address

Fixed address

33 / 52

Introduction PoLP Refmon Entropy

Static program + shared libraries

Env

Stack

.bss + .data

.text

.bss + .data

.text

Heap

.bss + .data

.text

low address

high address

Fixed address

Fixed address

libc.so

Fixed address

ld.so

Fixed address

Fixed address

34 / 52

Introduction PoLP Refmon Entropy

Static program + shared libraries + ASLR

Env

Stack

.bss + .data

.text

.bss + .data

.text

Heap

.bss + .data

.text

low address

high address

Fixed address

Randomized address

libc.so

Randomized address

ld.so

Randomized address

Randomized address

35 / 52

Introduction PoLP Refmon Entropy

Static program + shared libraries + ASLR + PIE

Env

Stack

.bss + .data

.text

.bss + .data

.text

Heap

.bss + .data

.text

low address

high address

Randomized address

Randomized address

libc.so

Randomized address

ld.so

Randomized address

Randomized address

36 / 52

Introduction PoLP Refmon Entropy

Paranoid randomization

Figure: Different level of randomization proposed by the ASLR-NG project
37 / 52

https://www.mdpi.com/2076-3417/9/14/2928

Introduction PoLP Refmon Entropy

Limitations of ASLR + PIE

Limited entropy

- visualized by the ASLR-NG project

Memory layout inheritance

- Child processes inherit/share the memory layout of the parent.

38 / 52

https://www.mdpi.com/2076-3417/9/14/2928

Introduction PoLP Refmon Entropy

Limitations of ASLR + PIE

Limited entropy

- visualized by the ASLR-NG project

Memory layout inheritance

- Child processes inherit/share the memory layout of the parent.

38 / 52

https://www.mdpi.com/2076-3417/9/14/2928

Introduction PoLP Refmon Entropy

Motivation for secure heap allocators

Memory errors are equally (if not more) likely to happen on heap
objects (compared with stack objects) which can cause all sorts of
unexpected behaviors.

39 / 52

Introduction PoLP Refmon Entropy

A heap buffer overflow case

1 struct dispatcher {
2 uint64_t counter;
3 int (*action)(uint64_t counter, char *data);
4 }
5

6 int main() {
7 char *p1 = malloc(16);
8 char *p2 = malloc(sizeof(struct dispatcher));
9 p2->counter = 0;

10 p2->action = /* some valid function */;
11

12 scanf("%s", p1);
13 int result = p2->action(p2->counter, p1);
14

15 free(p1);
16 free(p2);
17 return result;
18 }

40 / 52

Introduction PoLP Refmon Entropy

A heap use-after-free case

1 struct dispatcher {
2 uint64_t counter;
3 int (*action)(uint64_t counter, char *data);
4 }
5

6 char *p1;
7

8 void main() {
9 p1 = malloc(16);

10 pthread_create(/* ... */, thread_1);
11 pthread_create(/* ... */, thread_2);
12 /* wait for thread termination */
13 }

1 void thread_1() {
2 scanf("%15s", p1);
3 /* ... compromised here ... */
4 /* use-after-free */
5 free(p1);
6 ((struct dispatcher *)p1)
7 ->action = /* bad function */;
8 }

1 void thread_2() {
2 char *p2 = malloc(
3 sizeof(struct dispatcher));
4 p2->counter = 0;
5 p2->action = /* good function */;
6 p2->action(p2->counter, p1);
7 free(p2);
8 }

41 / 52

Introduction PoLP Refmon Entropy

Secure heap allocators

These exploits have implicit assumptions on the layout of the heap,
which can be invalidated by a secure heap allocator.

42 / 52

Introduction PoLP Refmon Entropy

Basic allocator example

Initial state:

p1 = malloc(16);

p2 = malloc(sizeof(..));

free(p1);

p3 = malloc(sizeof(..));

0Each square is a 4-byte box
43 / 52

Introduction PoLP Refmon Entropy

Allocator + random placement

Initial state:

p1 = malloc(16);

p2 = malloc(sizeof(..));

free(p1);

p3 = malloc(sizeof(..));

0Each square is a 4-byte box
44 / 52

Introduction PoLP Refmon Entropy

Allocator + random placement + canary

Initial state:

p1 = malloc(16);

p2 = malloc(sizeof(..));

free(p1);

p3 = malloc(sizeof(..));

0Each square is a 4-byte box
45 / 52

Introduction PoLP Refmon Entropy

Intuition: gene/DNA diversity

In biology, maintaining high genetic diversity allows species to
adapt to future environmental changes, survive from deadly diseases,
and avoid inbreeding.

Similarly, we expect software diversity to protect software systems
(especially critical systems) from deadly viruses and attacks while
also serving as an early signal of being attacked.

46 / 52

Introduction PoLP Refmon Entropy

Intuition: gene/DNA diversity

In biology, maintaining high genetic diversity allows species to
adapt to future environmental changes, survive from deadly diseases,
and avoid inbreeding.

Similarly, we expect software diversity to protect software systems
(especially critical systems) from deadly viruses and attacks while
also serving as an early signal of being attacked.

46 / 52

Introduction PoLP Refmon Entropy

Core architecture

Instance 0 Instance 1 . . . Instance N

Input dispatching

Synchronization & output aggregation

47 / 52

Introduction PoLP Refmon Entropy

Core architecture (under attack)

Instance 0 Instance 1 . . . Instance N

Input dispatching

Synchronization & output aggregation

48 / 52

Introduction PoLP Refmon Entropy

Challenges of applying diversity-based defenses

Source of diversity

Synchronization of diversified instances

49 / 52

Introduction PoLP Refmon Entropy

Source of diversity

Compiler/loader-assisted diversity

- e.g., direction of stack growth
- e.g., different canary values
- e.g., different sanitizer instrumentation

N-version programming

- e.g., different language VM (V8 vs SpiderMonkey)
- e.g., different applications (nginx vs apache web server)
- e.g., similar applications from independent vendors/teams

Platform diversity

- e.g., different libc implementations (glibc vs musl libc)
- e.g., Adobe Reader on MacOS and Windows
- e.g., Server programs on Intel and ARM CPUs

50 / 52

Introduction PoLP Refmon Entropy

Source of diversity

Compiler/loader-assisted diversity

- e.g., direction of stack growth
- e.g., different canary values
- e.g., different sanitizer instrumentation

N-version programming

- e.g., different language VM (V8 vs SpiderMonkey)
- e.g., different applications (nginx vs apache web server)
- e.g., similar applications from independent vendors/teams

Platform diversity

- e.g., different libc implementations (glibc vs musl libc)
- e.g., Adobe Reader on MacOS and Windows
- e.g., Server programs on Intel and ARM CPUs

50 / 52

Introduction PoLP Refmon Entropy

Source of diversity

Compiler/loader-assisted diversity

- e.g., direction of stack growth
- e.g., different canary values
- e.g., different sanitizer instrumentation

N-version programming

- e.g., different language VM (V8 vs SpiderMonkey)
- e.g., different applications (nginx vs apache web server)
- e.g., similar applications from independent vendors/teams

Platform diversity

- e.g., different libc implementations (glibc vs musl libc)
- e.g., Adobe Reader on MacOS and Windows
- e.g., Server programs on Intel and ARM CPUs

50 / 52

Introduction PoLP Refmon Entropy

Mode of synchronization

Online mode (via rendezvous points)

Offline mode (via record-and-replay)

The key is to synchronize all sources of nondeterminism.

51 / 52

Introduction PoLP Refmon Entropy

⟨ End ⟩

52 / 52

	Introduction: what is mitigation?
	Principle of least privileges (PoLP)
	Reference monitoring
	Moving-target defense
	Stack canary
	Address space layout randomization
	Heap randomization
	Security through diversity

