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Reminders & Recap
Reminders:
• A3 is released

Recap – last time we covered:
• Secure boot

• HW & SW roots of trust

• Inter process isolation
• Virtualization methods
• Compartmentalization

• seccomp
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https://watssec.github.io/cs453-s25/assignments/a3/


Today
Access Control

Policies & Modeling
• Access Matrix (HRU Model)

PoC Architectures
• ACES
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Access Control
System security mechanisms often implement some form of access control

Definition: Access Control is the action of deciding whether a subject should be 
granted or denied access to an object; the act of accessing may mean 
consuming, setting, or using.

Terms:
• Subject: entity that is requesting access of some resources
• Object: the resource itself

Implemented across systems at different levels & granularities:
• OS-based memory management
• Compartmentalization 4



Access Control
Components required for an access control system

Security Policy
• Defines the high-level rules according to which access control must be 

regulated

Security Model
• Provides a formal representation of the access control security policy
• Allows for proof of properties 

Security Mechanism
• The low-level functions that implement the controls imposed by the policy 

stated by the formal model
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Access Control Policies
Discretionary access
• Access is identity- & authorization-based
• Identify of the subject is considered for defining policy and enforcement

Mandatory access
• Central authority assigns security level of objects
• Subjects are assigned access levels

Role-based access
• Depend on a subject’s roles within a system
• Define roles, access for each role, then assign roles
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Access Control Policies
Discretionary access: access is assigned per-subject

Example: file system permissions
Subjects:  set of users
Objects:  set of policies

Specify read, write, or execute permission for files by identify
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file1 file2 file3

Alice - - - r – x r - - 

Bob r - - r w x - - -

Carol - - - r – x - - -



Mandatory access: a security level is assigned to each object based on its 
sensitivity in the system. Then subjects are assigned access level or clearance
 

Example: Government/military clearance: 
• Top secret (TS), Secret (S), Confidential (C), Unclassified (U) 

Access Control Policies
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Mandatory access: a security level is assigned to each object based on its 
sensitivity in the system. Then subjects are assigned access level or clearance
 

Example: Government/military clearance: 
• Top secret (TS), Secret (S), Confidential (C), Unclassified (U) 
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Mandatory access: a security level is assigned to each object based on its 
sensitivity in the system. Then subjects are assigned access level or clearance
 

Example: Government/military clearance: 
• Top secret (TS), Secret (S), Confidential (C), Unclassified (U) 

Access Control Policies
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Role-based access: defined based on role in a system
• Tailored towards commercial applications 

• Grouping privileges
 

Example: Named-protection domain (NPD) privilege graph
• Domains have unique names, 

Access Control Policies
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Role-based access: defined based on role in a system
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Access Control Policies
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Access Control Models
Access Matrix: Harrison, Ruzzo, and Ullmann (HRU) Model
Let’s revisit this simple file permissions table

Questions:
• Using this matrix model, how can we define the state of the system?
• How can matrix operations be formalized?
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file1 file2 file3

Alice - - - r – x r - - 

Bob r - - r w x - - -

Carol - - - r – x - - -



Access Control Models
Access Matrix: Defining state

Definitions:
• Set of subjects (S) are entities that request access of a resource

• Rows in the matrix
• Subjects can be objects

• Set of objects (O) are entries available for access (in adherence to the policy)
• Columns in the matrix

• Access matrix (A) defines the access policy between S-O
• A[s,o] defines actions in A for subject s on object o

• Example: A[Alice,file1] = r+x 

System State:  (S, O, A)
• Changes to state are carried out through primitive operations
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Access Control Models
Primitive operations in HRU model 
• Enter action into A[s,o]
• Delete action from A[s,o]
• Create subject s’
• Create object o’
• Destroy subject s’
• Destroy object o’

Each operation has:
• A condition that is required for its execution
• Outputs a new state

• S’, O’, A’
19



Access Control Models

20
Primitive Operations of the HRU model



Access Control Models

21

ENTER action into A[s,o] 

Condition
• The specified subject and object are in the matrix

New state
• Set of subjects S is unmodified
• Set of objects O is unmodified
• Access matrix A changes only at A[s,o] (adding action r)



Access Control Models
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DELETE action into A[s,o] 

Condition
• The specified subject and object are in the matrix

New state
• Set of subjects S is unmodified
• Set of objects O is unmodified
• Access matrix A changes only at A[s,o] (removing action r)



Access Control Models
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CREATE subject s’

Condition
• The specified subject is not already in S

New state
• Add s’ into set of subjects and objects
• All entries in A that are not s’ remain the same
• Add s’ as a subject into A with no actions on any object
• Add s’ as an object into A with no actions by any subject



Access Control Models
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CREATE object o’

Condition
• The specified object is not already in O

New state
• Subjects remain unchanged
• Add o’ into set of objects
• All entries in A that are not o’ remain the same
• Add o’ as an object into A with no actions by any subject



Access Control Models
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DESTROY subject s’

Condition
• The specified subject is in S

New state
• Remove s’ from S to make S’
• Remove s’ from O to make S’
• Define A’ as all A[s,o] in A such that

• Each s is in S’
• Each o is in O’



Access Control Models
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DESTROY object o’

Condition
• The specified object is in S
• The specified object is not in S

New state
• S remains unchanged
• Remove s’ from O to make S’
• Define A’ as all A[s,o] in A such that

• Each s is in S’
• Each o is in O’



Access Control Matrix 
Access Control Models

Others:
• Bell-LaPadula Model
• Biba model
• Composition models
• Certificate based
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Access Control Mechanisms
Typical Requirements of Access Control Mechanisms:
• Tamper proof

• Should not be possible to alter 
• Alterations should not go undetected

• Non-bypassable
• It must mediate all access to the system and its resources

• Confinement
• Within a limited part of the system 
• Scattering functions over the system requires multiple levels of verification

• Limited / well-defined
• Designed with specific purpose
• Have the ability to easily test and verify
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ACES
Proof of Concept Architecture:
ACES – Automatic Compartmentalization for Embedded Systems

High-level idea: 
• Provide write and control flow integrity between regions of the same program
• If the application is attacked, it is contained within a compartment
• Compartments:

• Isolated code, its accessible data, and allowed control flow transfers
• Each instruction belongs to exactly one compartment

• Build compartments in an automated way
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ACES
Simple model: data and code with a certain control flow 

30

Memory

Code

bar()

Control Flow

foo()

foo2()

bar2()

Data



ACES
Task 1: Determine dependencies between data and code
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ACES
Task 2: Determine separation of code based on dependencies and flow
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ACES
Task 3: Define compartments, set access permissions, enforce isolation
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ACES
Approach: 

Step 1: Program dependence graph (PDG)
• Mapping between code blocks and all 

dependencies

• Captures all control-flow of the application

• Dependencies between global data
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ACES
Approach: 

Step 2: Create initial region graph
• Captures groupings of functions, global data

• Each vertex has a type based on what it 
contains

• Duplicates data vertices to separate 
“regions”

• Edges indicate a function in code vertex 
reads or writes to data a data vertex
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ACES
Approach: 

Step 3: Defining regions
• Initial region graph may define many regions

• Perform a merging step to reduce the number 
or regions

• Based on compartmentalization policy

• Merged by:
• Taking the union of their contained functions and 

associated edges
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ACES
Approach: 

Step 3: Defining regions
• Initial region graph may define many regions

• Perform a merging step to reduce the number 
or regions

• Merged by:
• Taking the union of their contained functions and 

associated edges

• Based on compartmentalization policy
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ACES
Approach: 

Step 3: Defining regions
• Initial region graph may define many regions

• Perform a merging step to reduce the number 
or regions

• Merged by:
• Taking the union of their contained functions and 

associated edges

• Based on compartmentalization policy

• When overlap, policy should specify
• Which code has priority
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ACES
Approach: 

Step 4: Lowering
• Additional merging 

• Made applicable to lower end systems with 
limited hardware support

• This example:
• 4 regions – typical possible for low-end MPUs
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Approach: 

Step 5: Configure hardware
• Use the final region graph to setup the hardware

ACES
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Approach: 

Step 5: Configure hardware
• Use the final region graph to setup the hardware

ACES
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Approach: 

Step 5: Configure hardware
• Use the final region graph to setup the hardware

ACES
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Approach: 

Step 5: Configure hardware
• Use the final region graph to setup the hardware

ACES
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Approach: 

Step 5: Configure hardware
• Use the final region graph to setup the hardware

ACES
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Approach: 

Step 6: Instrumentation
• Controlled transitions between 

compartments

ACES
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Approach: 

Step 6: Instrumentation
• Controlled transitions between 

compartments
• Instrumentation modifies each function call 

between compartments
• Returns invoke a compartment switch routine
• Each switch has a list of valid targets for the 

transition

ACES

47

Memory Layout

b

c

a

C1 C2

RX

RX

1

2

3

4

d

Data

RW

RWRW

switch

Code



Approach: 

Step 6: Instrumentation
• Controlled transitions between 

compartments
• Instrumentation modifies each function call 

between compartments
• Returns invoke a compartment switch routine
• Each switch has a list of valid targets for the 

transition

• If valid transition, performs a context switch
• Reconfigures the MPU
• Saves stack context

ACES
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ACES
Implementation:
• Implemented in LLVM

• Program analysis and instrumentation

• Applied to ARM devices 

Limitations:
• Heavy overhead due to instrumentation
• Device-specific automation based on available MPU configurations
• Read more!
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https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-clements.pdf


ACES
Questions?
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ACES
Questions?

What is in the TCB for access control enforcement?

Does ACES follow a sandbox, safebox, or mutual-distrust compartmentalization 
model?
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Other PoC Architectures
ACES achieves enforcement through:
• Static analysis + instrumentation 
• MPU for hardware enforcement
• Automatic mutual-distrusting user-space (bare-metal) compartments

• Can be made into sandbox or safebox based on user specified policy

Others:
• Privtrans: Safebox of user-space applications, OS-based control
• ERIM: Safebox for user-space applications, using Intel Memory Protection Keys
• CompartOS: Sandbox for user+kernel code, using CHERI
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https://www.usenix.org/conference/13th-usenix-security-symposium/privtrans-automatically-partitioning-programs-privilege
https://www.usenix.org/conference/usenixsecurity19/presentation/vahldiek-oberwagner
https://arxiv.org/abs/2206.02852


That’s all for today!
Next time…
• Authentication & Attestation

Reminders:
• A3 is released
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https://watssec.github.io/cs453-s25/assignments/a3/
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