
Module: Operating Systems Security
Lecture: Access Control Policies & Architectures

Adam Caulfield
University of Waterloo

Spring 2025

CS 453/698: Software and Systems Security

1

Reminders & Recap
Reminders:
• A3 is released

Recap – last time we covered:
• Secure boot

• HW & SW roots of trust

• Inter process isolation
• Virtualization methods
• Compartmentalization

• seccomp

2

https://watssec.github.io/cs453-s25/assignments/a3/

Today
Access Control

Policies & Modeling
• Access Matrix (HRU Model)

PoC Architectures
• ACES

3

Access Control
System security mechanisms often implement some form of access control

Definition: Access Control is the action of deciding whether a subject should be
granted or denied access to an object; the act of accessing may mean
consuming, setting, or using.

Terms:
• Subject: entity that is requesting access of some resources
• Object: the resource itself

Implemented across systems at different levels & granularities:
• OS-based memory management
• Compartmentalization 4

Access Control
Components required for an access control system

Security Policy
• Defines the high-level rules according to which access control must be

regulated

Security Model
• Provides a formal representation of the access control security policy
• Allows for proof of properties

Security Mechanism
• The low-level functions that implement the controls imposed by the policy

stated by the formal model
5

Access Control Policies
Discretionary access
• Access is identity- & authorization-based
• Identify of the subject is considered for defining policy and enforcement

Mandatory access
• Central authority assigns security level of objects
• Subjects are assigned access levels

Role-based access
• Depend on a subject’s roles within a system
• Define roles, access for each role, then assign roles

6

Access Control Policies
Discretionary access: access is assigned per-subject

Example: file system permissions
Subjects: set of users
Objects: set of policies

Specify read, write, or execute permission for files by identify

7

file1 file2 file3

Alice - - - r – x r - -

Bob r - - r w x - - -

Carol - - - r – x - - -

Mandatory access: a security level is assigned to each object based on its
sensitivity in the system. Then subjects are assigned access level or clearance

Example: Government/military clearance:
• Top secret (TS), Secret (S), Confidential (C), Unclassified (U)

Access Control Policies

8

TS

S

C

U

Mandatory access: a security level is assigned to each object based on its
sensitivity in the system. Then subjects are assigned access level or clearance

Example: Government/military clearance:
• Top secret (TS), Secret (S), Confidential (C), Unclassified (U)

Access Control Policies

9

TS

S

C

U

Information Flow

Mandatory access: a security level is assigned to each object based on its
sensitivity in the system. Then subjects are assigned access level or clearance

Example: Government/military clearance:
• Top secret (TS), Secret (S), Confidential (C), Unclassified (U)

Access Control Policies

10

TS

S

C

U

Information FlowDominance

Role-based access: defined based on role in a system
• Tailored towards commercial applications

• Grouping privileges

Example: Named-protection domain (NPD) privilege graph
• Domains have unique names,

Access Control Policies

11

Passwords

Env. configs

Developer files

User files

Objects

Role-based access: defined based on role in a system
• Tailored towards commercial applications

• Grouping privileges

Example: Named-protection domain (NPD) privilege graph
• Domains have unique names,

Access Control Policies

12

Passwords

Env. configs

Developer files

User files

Objects Roles/Domains

Admin
Domain

Dev.
Domain

User
Domain

Role-based access: defined based on role in a system
• Tailored towards commercial applications

• Grouping privileges

Example: Named-protection domain (NPD) privilege graph
• Domains have unique names,

Access Control Policies

13

Passwords

Env. configs

Developer files

User files

Objects Roles/Domains

Admin
Domain

Dev.
Domain

User
Domain

Role-based access: defined based on role in a system
• Tailored towards commercial applications

• Grouping privileges

Example: Named-protection domain (NPD) privilege graph
• Domains have unique names,

Access Control Policies

14

Passwords

Env. configs

Developer files

User files

Objects Roles/Domains

Admin
Domain

Dev.
Domain

User
Domain

Role-based access: defined based on role in a system
• Tailored towards commercial applications

• Grouping privileges

Example: Named-protection domain (NPD) privilege graph
• Domains have unique names,

Access Control Policies

15

Passwords

Env. configs

Developer files

User files

Objects Roles/Domains

Admin
Domain

Dev.
Domain

User
Domain

Role-based access: defined based on role in a system
• Tailored towards commercial applications

• Grouping privileges

Example: Named-protection domain (NPD) privilege graph
• Domains have unique names,

Access Control Policies

16

Passwords

Env. configs

Developer files

User files

Objects Roles/Domains

Admin
Domain

Dev.
Domain

User
Domain

Subjects

Alice

Bob

Carol

Access Control Models
Access Matrix: Harrison, Ruzzo, and Ullmann (HRU) Model
Let’s revisit this simple file permissions table

Questions:
• Using this matrix model, how can we define the state of the system?
• How can matrix operations be formalized?

17

file1 file2 file3

Alice - - - r – x r - -

Bob r - - r w x - - -

Carol - - - r – x - - -

Access Control Models
Access Matrix: Defining state

Definitions:
• Set of subjects (S) are entities that request access of a resource

• Rows in the matrix
• Subjects can be objects

• Set of objects (O) are entries available for access (in adherence to the policy)
• Columns in the matrix

• Access matrix (A) defines the access policy between S-O
• A[s,o] defines actions in A for subject s on object o

• Example: A[Alice,file1] = r+x

System State: (S, O, A)
• Changes to state are carried out through primitive operations

18

Access Control Models
Primitive operations in HRU model
• Enter action into A[s,o]
• Delete action from A[s,o]
• Create subject s’
• Create object o’
• Destroy subject s’
• Destroy object o’

Each operation has:
• A condition that is required for its execution
• Outputs a new state

• S’, O’, A’
19

Access Control Models

20
Primitive Operations of the HRU model

Access Control Models

21

ENTER action into A[s,o]

Condition
• The specified subject and object are in the matrix

New state
• Set of subjects S is unmodified
• Set of objects O is unmodified
• Access matrix A changes only at A[s,o] (adding action r)

Access Control Models

22

DELETE action into A[s,o]

Condition
• The specified subject and object are in the matrix

New state
• Set of subjects S is unmodified
• Set of objects O is unmodified
• Access matrix A changes only at A[s,o] (removing action r)

Access Control Models

23

CREATE subject s’

Condition
• The specified subject is not already in S

New state
• Add s’ into set of subjects and objects
• All entries in A that are not s’ remain the same
• Add s’ as a subject into A with no actions on any object
• Add s’ as an object into A with no actions by any subject

Access Control Models

24

CREATE object o’

Condition
• The specified object is not already in O

New state
• Subjects remain unchanged
• Add o’ into set of objects
• All entries in A that are not o’ remain the same
• Add o’ as an object into A with no actions by any subject

Access Control Models

25

DESTROY subject s’

Condition
• The specified subject is in S

New state
• Remove s’ from S to make S’
• Remove s’ from O to make S’
• Define A’ as all A[s,o] in A such that

• Each s is in S’
• Each o is in O’

Access Control Models

26

DESTROY object o’

Condition
• The specified object is in S
• The specified object is not in S

New state
• S remains unchanged
• Remove s’ from O to make S’
• Define A’ as all A[s,o] in A such that

• Each s is in S’
• Each o is in O’

Access Control Matrix
Access Control Models

Others:
• Bell-LaPadula Model
• Biba model
• Composition models
• Certificate based

27

Access Control Mechanisms
Typical Requirements of Access Control Mechanisms:
• Tamper proof

• Should not be possible to alter
• Alterations should not go undetected

• Non-bypassable
• It must mediate all access to the system and its resources

• Confinement
• Within a limited part of the system
• Scattering functions over the system requires multiple levels of verification

• Limited / well-defined
• Designed with specific purpose
• Have the ability to easily test and verify

28

ACES
Proof of Concept Architecture:
ACES – Automatic Compartmentalization for Embedded Systems

High-level idea:
• Provide write and control flow integrity between regions of the same program
• If the application is attacked, it is contained within a compartment
• Compartments:

• Isolated code, its accessible data, and allowed control flow transfers
• Each instruction belongs to exactly one compartment

• Build compartments in an automated way

29

ACES
Simple model: data and code with a certain control flow

30

Memory

Code

bar()

Control Flow

foo()

foo2()

bar2()

Data

ACES
Task 1: Determine dependencies between data and code

31

Memory

Code

bar()

Control Flow

foo2()

bar2()

Data region 1

Data region 2

Data region 3

foo()

ACES
Task 2: Determine separation of code based on dependencies and flow

32

Memory

Code Region X

Code Region Y

Code Region Z

y.bar()

Control Flow

x.foo()

x.foo2()

z.bar2()

Data region 1

Data region 2

Data region 3

ACES
Task 3: Define compartments, set access permissions, enforce isolation

33

Memory

Code Region X

Code Region Y

Code Region Z

y.bar()

Control Flow

x.foo()

x.foo2()

z.bar2()

Data region 1

Data region 2

Data region 3 RW

RW

RW

RW

C1 C2 C3

RX

RX

RX

ACES
Approach:

Step 1: Program dependence graph (PDG)
• Mapping between code blocks and all

dependencies

• Captures all control-flow of the application

• Dependencies between global data

34

1

2

3

4

a

b

c

d

Program Dependency Graph

ACES
Approach:

Step 2: Create initial region graph
• Captures groupings of functions, global data

• Each vertex has a type based on what it
contains

• Duplicates data vertices to separate
“regions”

• Edges indicate a function in code vertex
reads or writes to data a data vertex

35

1

2

3

4
a

b

c

d

Program Dependency Graph

a

c

ACES
Approach:

Step 3: Defining regions
• Initial region graph may define many regions

• Perform a merging step to reduce the number
or regions

• Based on compartmentalization policy

• Merged by:
• Taking the union of their contained functions and

associated edges

36

1

2

3

4
a

b

c

d

Program Dependency Graph

a

c

ACES
Approach:

Step 3: Defining regions
• Initial region graph may define many regions

• Perform a merging step to reduce the number
or regions

• Based on compartmentalization policy

• Merged by:
• Taking the union of their contained functions and

associated edges

37

1

2

3

4
a

b

c

d

Program Dependency Graph

a

c

ACES
Approach:

Step 3: Defining regions
• Initial region graph may define many regions

• Perform a merging step to reduce the number
or regions

• Merged by:
• Taking the union of their contained functions and

associated edges

• Based on compartmentalization policy

38

1

2

3

4 a

b

d

Program Dependency Graph

a

c

ACES
Approach:

Step 3: Defining regions
• Initial region graph may define many regions

• Perform a merging step to reduce the number
or regions

• Merged by:
• Taking the union of their contained functions and

associated edges

• Based on compartmentalization policy

• When overlap, policy should specify
• Which code has priority

39

1

2

3

4 a

b

d

Program Dependency Graph

c

ACES
Approach:

Step 4: Lowering
• Additional merging

• Made applicable to lower end systems with
limited hardware support

• This example:
• 4 regions – typical possible for low-end MPUs

40

1

2

3

4 a

b

d

Program Dependency Graph

c

Approach:

Step 5: Configure hardware
• Use the final region graph to setup the hardware

ACES

41

1

2

3

4
a

b

d

Memory Layout

c

Code

b

c

a

1

2

3

4

d

Data

Approach:

Step 5: Configure hardware
• Use the final region graph to setup the hardware

ACES

42

1

2

3

4
a

b

d

Memory Layout

c

Code

b

c

a

1

2

3

4

d

Data

Approach:

Step 5: Configure hardware
• Use the final region graph to setup the hardware

ACES

43

1

2

3

4
a

b

d

Memory Layout

c

Code

b

c

a

1

2

3

4

d

Data

Approach:

Step 5: Configure hardware
• Use the final region graph to setup the hardware

ACES

44

1

2

3

4
a

b

d

Memory Layout

c

Code

b

c

a

C1 C2

RX

RX

1

2

3

4

d

Data

Approach:

Step 5: Configure hardware
• Use the final region graph to setup the hardware

ACES

45

1

2

3

4
a

b

d

Memory Layout

c

Code

b

c

a

C1 C2

RX

RX

1

2

3

4

d

Data

RW

RWRW

Approach:

Step 6: Instrumentation
• Controlled transitions between

compartments

ACES

46

Memory Layout

b

c

a

C1 C2

RX

RX

1

2

3

4

d

Data

RW

RWRW

Code

Approach:

Step 6: Instrumentation
• Controlled transitions between

compartments
• Instrumentation modifies each function call

between compartments
• Returns invoke a compartment switch routine
• Each switch has a list of valid targets for the

transition

ACES

47

Memory Layout

b

c

a

C1 C2

RX

RX

1

2

3

4

d

Data

RW

RWRW

switch

Code

Approach:

Step 6: Instrumentation
• Controlled transitions between

compartments
• Instrumentation modifies each function call

between compartments
• Returns invoke a compartment switch routine
• Each switch has a list of valid targets for the

transition

• If valid transition, performs a context switch
• Reconfigures the MPU
• Saves stack context

ACES

48

Memory Layout

b

c

a

C1 C2

RX

RX

1

2

3

4

d

Data

RW

RWRW

switch

Code

ACES
Implementation:
• Implemented in LLVM

• Program analysis and instrumentation

• Applied to ARM devices

Limitations:
• Heavy overhead due to instrumentation
• Device-specific automation based on available MPU configurations
• Read more!

49

https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-clements.pdf

ACES
Questions?

50

ACES
Questions?

What is in the TCB for access control enforcement?

Does ACES follow a sandbox, safebox, or mutual-distrust compartmentalization
model?

51

Other PoC Architectures
ACES achieves enforcement through:
• Static analysis + instrumentation
• MPU for hardware enforcement
• Automatic mutual-distrusting user-space (bare-metal) compartments

• Can be made into sandbox or safebox based on user specified policy

Others:
• Privtrans: Safebox of user-space applications, OS-based control
• ERIM: Safebox for user-space applications, using Intel Memory Protection Keys
• CompartOS: Sandbox for user+kernel code, using CHERI

52

https://www.usenix.org/conference/13th-usenix-security-symposium/privtrans-automatically-partitioning-programs-privilege
https://www.usenix.org/conference/usenixsecurity19/presentation/vahldiek-oberwagner
https://arxiv.org/abs/2206.02852

That’s all for today!
Next time…
• Authentication & Attestation

Reminders:
• A3 is released

53

https://watssec.github.io/cs453-s25/assignments/a3/

54

	Default Section
	Slide 1: Module: Operating Systems Security
	Slide 2: Reminders & Recap
	Slide 3: Today
	Slide 4: Access Control
	Slide 5: Access Control
	Slide 6: Access Control Policies
	Slide 7: Access Control Policies
	Slide 8: Access Control Policies
	Slide 9: Access Control Policies
	Slide 10: Access Control Policies
	Slide 11: Access Control Policies
	Slide 12: Access Control Policies
	Slide 13: Access Control Policies
	Slide 14: Access Control Policies
	Slide 15: Access Control Policies
	Slide 16: Access Control Policies
	Slide 17: Access Control Models
	Slide 18: Access Control Models
	Slide 19: Access Control Models
	Slide 20: Access Control Models
	Slide 21: Access Control Models
	Slide 22: Access Control Models
	Slide 23: Access Control Models
	Slide 24: Access Control Models
	Slide 25: Access Control Models
	Slide 26: Access Control Models
	Slide 27: Access Control Matrix
	Slide 28: Access Control Mechanisms
	Slide 29: ACES
	Slide 30: ACES
	Slide 31: ACES
	Slide 32: ACES
	Slide 33: ACES
	Slide 34: ACES
	Slide 35: ACES
	Slide 36: ACES
	Slide 37: ACES
	Slide 38: ACES
	Slide 39: ACES
	Slide 40: ACES
	Slide 41: ACES
	Slide 42: ACES
	Slide 43: ACES
	Slide 44: ACES
	Slide 45: ACES
	Slide 46: ACES
	Slide 47: ACES
	Slide 48: ACES
	Slide 49: ACES
	Slide 50: ACES
	Slide 51: ACES
	Slide 52: Other PoC Architectures
	Slide 53: That’s all for today!
	Slide 54

