
Module: Operating Systems Security
Lecture: Malware, Systems Security, and Adversary Actions

Adam Caulfield
University of Waterloo

Spring 2025

CS 453/698: Software and Systems Security

1

Topics covered…
• Cryptography
• Compilers, the stack, the heap
• Memory errors (e.g., buffer overflow, use-after-free, format string)
• Software security mitigations (e.g., memory safety, ASLR, CFI)
• Race conditions, data races, atomicity violations
• Input sanitization, fuzzing, static analysis, symbolic execution

Software (part 1) and Systems (part 2) Security
 Today!! → finish software security, intro to systems security

This course so far…

2

Topics covered…
• Cryptography
• Compilers, the stack, the heap
• Memory errors (e.g., buffer overflow, use-after-free, format string)
• Software security mitigations (e.g., memory safety, ASLR, CFI)
• Race conditions, data races, atomicity violations
• Input sanitization, fuzzing, static analysis, symbolic execution

Software (part 1) and Systems (part 2) Security
 Today!! → finish software security, intro to systems security

This course so far…

3

• A little about me…

• What is malware? What are the types of malware?

• Intro to systems security…. Reflections on Trusting Trust

• Adversarial Actions
• What steps will be taken to compromise the system?

Outline

4

• A little about me…

• What is malware? What are the types of malware?

• Intro to systems security…. Reflections on Trusting Trust

• Adversarial Actions
• What steps will be taken to compromise the system?

Outline

5

Currently a postdoctoral research scholar
• In Secure Systems Group (SSG) supervised by Prof. N. Asokan
• Jan 2025 - Ph.D. in Computing and Information Sciences

• Rochester Institute of Technology
• Advised by Dr. Ivan De Oliveira Nunes

• May 2019/2020 - B.S and M.S. in Computer and Electrical Engineering
• University of Delaware

• I do systems security research, particularly in:
• Computer Architecture, Embedded Systems, Trusted Execution

Environments, Trusted Hardware Design, Program/Binary Analysis,
• Dissertation Focus: Runtime Security

• Proofs of Execution, Control Flow Integrity, and Control Flow Attestation

• I publish my work at Security and EDA conferences:
• USENIX Security, IEEE S&P (Oakland), ACSAC, ICCAD, DAC

• Interested in research? Come chat after class any time

A little about me…

6

https://ssg-research.github.io/
https://asokan.org/asokan/
https://ivanolive.github.io/
https://adamicaulfield.github.io/research.html

As it relates to this course:
• My expertise is systems security
• Particularly excited for OS, Mobile, Hardware security modules

Contacting me:
• Feel free to email me (acaulfie@uwaterloo.ca)
• Or tag me in Piazza

Office hours (same as Meng)
• Tuesday 11am-12pm in BBB

• If you’re coming, email me day before as a heads up…
• If that time doesn’t work, email me

A little about me…

7

mailto:acaulfie@uwaterloo.ca

• A little about me…

• What is malware? What are the types of malware?

• Intro to systems security…. Reflections on Trusting Trust

• Adversarial Actions
• What steps will be taken to compromise the system?

Outline

8

Definition: various forms of software written with malicious intent

Common Characteristic: need to be executed in order to cause harm

How might malware get executed?
• User action

• Downloading and running malicious software
• Viewing a web page containing malicious code
• Opening an executable in an email attachment
• Inserting CD/DVD or USB flash drive

• Exploiting existing flaw in the system
• Memory vulnerability

What is malware?

9

• Virus

• Worms

• Trojans

• Logical Bombs

Types of Malware

10

Types of Malware - Virus

A virus is a specific type of malware that “infects” other files

• Traditionally, a virus could infect only executable programs
• But now, data documents can also contain executable code

• Macros in .xlsx or javascript in .pdf

Upon opening an infected file, the virus will:
• Activate itself
• Copy itself into other files
• Execute its payload
• (sometimes) spread as far as it can: locally or to other machines

11

Types of Malware - Virus

Example virus: CIH “Chernobyl” virus, 1998
• Written by a student
• A challenge against antivirus software
• Spread under “portable executable file”

Once activated, it:
• Overwrite the first megabyte of the hard

drive
• Attempt to corrupt the computer’s BIOS

12

Antivirus intercept CIH virus

https://en.wikipedia.org/wiki/CIH_(computer_virus)

Types of Malware - Worm

A worm is a self-contained piece of code that can replicate with little
or no user involvement

Worms often execute the following steps:
• Exploits security flaw to infect software
• Searches for other computers in local network or internet
• Perform some action (e.g., steal data, denial of service)

13

Types of Malware - Worm

Example worm: ILOVEYOU
• One of the farthest-reaching worms, May 2000
• Infected almost every military base in the USA

• USA Department of the Army: “12,010 manhours lost, estimated cost $79.2k”

14
Steps of the ILOVEYOU worm

https://www.hsdl.org/c/abstract/?docid=2451
https://www.cnn.com/2020/05/01/tech/iloveyou-virus-computer-security-intl-hnk

Types of Malware - Worm

15
Screenshot showing a copy of the ILOVEYOU worm

https://www.cnn.com/2020/05/01/tech/iloveyou-virus-computer-security-intl-hnk

Types of Malware – Trojan Horses

16

Types of Malware – Trojan Horses

Trojan Horses (aka trojans) are programs which claim to do something
innocuous while hiding malicious behavior.

Unlike viruses or worms, do not try to inject themselves into other files

Trojans might embed themselves in:
• Email attachment
• Fake software updates
• “Free” movies or games

17

Types of Malware – Trojan Horses

Example: Zbot (Zeus Trojan), 2007

• Starts through a phishing email with a download to an attachment
• Used to download the malware after a user executes it

• Local machine becomes part of the Zues Trojan botnet
• Giving the owner control of the device
• Use keylogging to get user’s passwords, bank information
• More information: https://www.proofpoint.com/us/threat-reference/zeus-trojan-zbot

18

https://www.proofpoint.com/us/threat-reference/zeus-trojan-zbot

Types of Malware – Logic Bomb

A logic bomb is malicious code hiding in the software that is already
installed on a machine

• Then, it waits for a certain trigger to “go off” (execute its payload)

Example payloads in logic bombs:
• Erase data
• Corrupt data
• Encrypt data – charge you for decryption key (ransom)

19

Types of Malware – Logic Bomb

Where do logic bombs come from?
• Targeted planting
• From backdoors that

• Developers forgot to remove
• Were intentionally left for testing, maintenance, or legal purposes
• Intentionally left for malicious purposes (insider attack)

20

Types of Malware – Logic Bomb

Example: Siemens logic bomb, 2019

• Insider attack – planted by former Siemens contractor
• Planted logic bombs inside spreadsheets

• Inserted two years before they “triggered”
• Made all custom scripts in the spreadsheets crash

• Siemens would only call the contractor, since he knew how to fix them
• He would charge them a fee each time

• Story:
• https://www.zdnet.com/article/siemens-contractor-pleads-guilty-to-

planting-logic-bomb-in-company-spreadsheets/

21

https://www.zdnet.com/article/siemens-contractor-pleads-guilty-to-planting-logic-bomb-in-company-spreadsheets/
https://www.zdnet.com/article/siemens-contractor-pleads-guilty-to-planting-logic-bomb-in-company-spreadsheets/

Detecting Malware

When should we look for malware?
• As files are added to the system

• Via Portable media, network channel

• Periodic scans of the entire computer
• In hopes to catch anything we might have missed

General approaches:
• Signature-based protection
• Behavior-based protection

22

Detecting Malware

Signature-based Protection
• Keep a list of known malware

• For each malware in the list, store some characteristic feature
• E.g., a signature of the malware

• Most use a feature of the malware code itself
• The infection code
• The payload code

• Can also try to identify other characteristics of malware
• Hiding places within programs
• Propagation characteristics

23

Detecting Malware

Signature-based Protection
• Limitations?

• Can only scan for viruses that are in the list
• New types of malware are constantly emerging
• Some malware is polymorphic – does not make exact copies of itself

That’s where behavior-based systems come in
• Does not search for static code fragments
• Detection is based on behavioral patterns

24

Detecting Malware

Examples:

25

https://learn.microsoft.com/en-us/defender-endpoint/behavior-monitor

Microsoft Defender Antivirus (Behavior-based detection) Norton Antivirus (combination of both)

https://support.norton.com/sp/en/us/home/current/solutions/v20240108182054157?

https://learn.microsoft.com/en-us/defender-endpoint/behavior-monitor
https://support.norton.com/sp/en/us/home/current/solutions/v20240108182054157

• A little about me…

• What is malware? What are the types of malware?

• Intro to systems security…. Reflections on Trusting Trust

• Adversarial Actions
• What steps will be taken to compromise the system?

Outline

26

Reflections on Trusting Trust

27

Ken Thompson

Reflections on Trusting Trust

28

Ken Thompson

Unix, B/C co-designer, Go co-inventor, 1983
ACM Turing Award Recipient

Reflections on Trusting Trust
What code can we trust?

Consider “login” or “su” in Unix
• Why are these binaries “reliable” ?

29

Reflections on Trusting Trust
What code can we trust?

Consider “login” or “su” in Unix
• Why are these binaries “reliable” ?
• Is Ubuntu reliable? RedHat? Android?
• Does it send your password to someone?
• Does it have a backdoor for a “special” remote user?

• Can’t trust the binary
• So, check source code or write your own, then recompile
• Does this solve the problem?

30

Reflections on Trusting Trust
Can we trust the compiler itself?

• What if:
• Compiler looks for source code that resembles the login process
• Inserts a backdoor into the process

• Okay, so we can inspect the source code of the compiler
• Looks good? Recompile the compiler!

• Does this solve the problem?

31

Reflections on Trusting Trust

• The compiler is written in C …

 compiler(S) {

 if (match(S, "login-pattern")) {

 compile (login-backdoor)

 return

 }

 if (match(S, "compiler-pattern")) {

 compile (compiler-backdoor)

 return

 }

 /* compile as usual */

 }

32

Reflections on Trusting Trust

“ The moral is obvious. You can't trust code that you did not
totally create yourself. (Especially code from companies that
employ people like me.) No amount of source-level verification
or scrutiny will protect you from using untrusted code.”

33

Reflections on Trusting Trust

Moral of the story:
• We have to trust something
• Comprehend and minimize the amount of trust
• Trust is transitive: if you trust something, you trust what it trusts

Systems Security:
• Understand the attacker’s goal, entry point, capabilities
• Identify the Root of Trust for a system:

• The parts that are relied upon (trusted) without verification

• Build and deploy defenses accordingly

34

• A little about me…

• What is malware? What are the types of malware?

• Intro to systems security…. Reflections on Trusting Trust

• Adversarial Actions
• What steps will be taken to compromise the system?

Outline

35

Adversarial Actions
We must always look from the adversary point of view…

Types of malware describe WHAT an adversary’s attack does

So, HOW does the adversary get there?

Let’s look at the several phases of the attack
1. Identifying the memory vulnerability
2. Violating integrity
3. Identifying exploit payload
4. Dispatching the exploit
5. Executing the exploit
6. Achieving the attack 36

System Model

37

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

R
A
M

F
L
A
S
H

Registers

First, lets define a “simple computer”

Core components:
• CPU + Registers
• Bus controller
• Memory

• Volatile – RAM
• Non-volatile -- FLASH

System Model

38

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

Registers

CPU
• Reads from Memory to Registers
• Writes from memory to Registers
• Registers are internal to CPU
• Manipulates registers for operations

• R1 = R2 + R3
• R6 = R7 xor R3
• Etc…

R
A
M

F
L
A
S
H

System Model

39

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

Registers

BUS Controller
• Access memory as instructed by CPU
• load 0x1234 R3
• store r5 0xe400
• etc…

Facilitate each read/write from/to memory location X
• X can be in either RAM or FLASH

R
A
M

F
L
A
S
H

System Model

40

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

Registers

RAM
• Volatile (erased when powered off)
• Used to store intermediate computation results
• Aka data memory

R
A
M

F
L
A
S
H

System Model

41

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

Registers

FLASH
• Non Volatile (persistent across power cycles)
• Program Memory
• Stores instructions

R
A
M

F
L
A
S
H

System Model

42

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

Registers

Execution
• At each given time (clock cycle), the CPU executes

an instruction
• It executes the instruction stored in a special

register
• Program Counter (PC): points to address of the

instruction that is currently executing

Instructions
• Load/store from memory
• Operate on registers
• Mandate the next PC value

R
A
M

F
L
A
S
H

PC

R
A
M

F
L
A
S
H

System Model

43

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

Registers

Assumption:
• The system has already booted and initialized
• It is currently running program (P)
• It reads/writes from data (D)

Malware: information leak or malicious execution

Where does an adversary start to attack P or D?

Memory Vulnerability

D

P
PC

R
A
M

F
L
A
S
H

Steps taken by an adversary

44

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

Registers

Step 1: Identify a Memory Vulnerability in P

• Out of bounds pointer
• Buffer overflows (stack, heap)
• Integer overflows

• Dangling pointer
• Use-after-free
• Double free

• Format string vulnerability

D

P

1 Memory Vuln. 2 Integrity Violation 3 Exploit Payload 4 Exploit Dispatch 5 Execute Exploit

R
A
M

F
L
A
S
H

Steps taken by an adversary

45

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

Registers

Step 1: Identify a Memory Vulnerability in P

Leads to a useful gadget for our adversary…

• Unintended read
• Unintended write

3 Exploit Payload 4 Exploit Dispatch 5 Execute Exploit1 Memory Vuln. 2 Integrity Violation

D

P

R
A
M

F
L
A
S
H

Steps taken by an adversary

46

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

Registers

Step 2: Cause an Integrity Violation

• Unintended read:
• Exfiltrates data from memory to registers

D

P

1 Memory Vuln. 2 Integrity Violation 3 Exploit Payload 4 Exploit Dispatch 5 Execute Exploit

R
A
M

F
L
A
S
H

Steps taken by an adversary

47

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

Registers

Step 3: Construct Payload

Unintended Read:
• Interpret/send the exfiltrated data
• Done! Information Leakage

D

P

1 Memory Vuln. 2 Integrity Violation 3 Exploit Payload 4 Exploit Dispatch 5 Execute Exploit

R
A
M

F
L
A
S
H

Steps taken by an adversary

48

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

Registers

Step 2: Cause an Integrity Violation

Unintended write:
• Modifies code or data
• Enables malicious execution

D

P

1 Memory Vuln. 2 Integrity Violation 3 Exploit Payload 4 Exploit Dispatch 5 Execute Exploit

R
A
M

F
L
A
S
H

Steps taken by an adversary

49

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

Registers

Step 2: Cause an Integrity Violation

Unintended Writes that enable malicious execution
Enable modification of…

• The program itself

D

P’

1 Memory Vuln. 2 Integrity Violation 3 Exploit Payload 4 Exploit Dispatch 5 Execute Exploit

R
A
M

F
L
A
S
H

Steps taken by an adversary

50

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

Registers

Step 2: Cause an Integrity Violation

Unintended Writes that enable malicious execution
Enable modification of…

• The program itself

• The program’s control data
• Return address, function pointer

• The program’s non-control data
• Data that affects the execution path

• The available integrity violation itself is used for the
payload

D

P

1 Memory Vuln. 2 Integrity Violation 3 Exploit Payload 4 Exploit Dispatch 5 Execute Exploit

R
A
M

F
L
A
S
H

Steps taken by an adversary

51

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

Registers

Step 3: Construct Payload

Unintended Writes that enable malicious execution
• Modify program (fragment) → inject attacker-controlled code

D

1 Memory Vuln. 2 Integrity Violation 3 Exploit Payload 4 Exploit Dispatch 5 Execute Exploit

P’

R
A
M

F
L
A
S
H

Steps taken by an adversary

52

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

Registers

Step 3: Construct Payload

Unintended Writes that enable malicious execution
• Modify program (fragment) → inject attacker-controlled code

• Modify control data → inject attacker-controlled address as…
• Return address
• Function pointer

• Modify non-control data → inject attacker-controlled data into
• Data that affects the execution path

• Variables used in if-else blocks, switch statements, loops

D

P

1 Memory Vuln. 2 Integrity Violation 3 Exploit Payload 4 Exploit Dispatch 5 Execute Exploit

R
A
M

F
L
A
S
H

Steps taken by an adversary

53

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

Registers

Step 4: Dispatch the exploit

Unintended Writes that enable malicious execution

Abuse benign program behavior that operates on
adversary-controlled input
Call/jump/return to

• The modified program (fragment)

D

1 Memory Vuln. 2 Integrity Violation 3 Exploit Payload 4 Exploit Dispatch 5 Execute Exploit

P’

PC

R
A
M

F
L
A
S
H

Steps taken by an adversary

54

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

Registers

Step 4: Dispatch the exploit

Unintended Writes that enable malicious execution

Abuse benign program behavior that operates on
adversary-controlled input
Call/jump/return to

• The modified program (fragment)

• The gadget at the adv-controlled address (control data)

• The gadget using the non-control data

D

1 Memory Vuln. 2 Integrity Violation 3 Exploit Payload 4 Exploit Dispatch 5 Execute Exploit

P

R
A
M

F
L
A
S
H

Steps taken by an adversary

55

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

Registers

Step 4: Dispatch the exploit

Unintended Writes that enable malicious execution

Abuse benign program behavior that operates on
adversary-controlled input
Call/jump/return to

• The modified program (fragment)

• The gadget at the adv-controlled address (control data)

• The gadget using the non-control data

D

1 Memory Vuln. 2 Integrity Violation 3 Exploit Payload 4 Exploit Dispatch 5 Execute Exploit

P’

R
A
M

F
L
A
S
H

Steps taken by an adversary

56

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

Registers

Step 5: Execute the exploit

At this point, the attacker has compromised the program

Achieved malicious execution
• Either through their own inserted instructions
• Through stitching of unmodified instructions

D

1 Memory Vuln. 2 Integrity Violation 3 Exploit Payload 4 Exploit Dispatch 5 Execute Exploit

P’

PC

Steps taken by an adversary

57

1

2

3

4

5

Memory
Vulnerability

Integrity
Violation

Exploit
Payload

Exploit
Dispatch

Exploit
Execution

6 Attack

Steps taken by an adversary

58

2

3

4

5

Integrity
Violation

Exploit
Payload

Exploit
Dispatch

Exploit
Execution

6 Attack Information leak Malicious execution

1 Memory
Vulnerability

Steps taken by an adversary

59

2

3

4

5

Integrity
Violation

Exploit
Payload

Exploit
Dispatch

Exploit
Execution

6 Attack Information leak Malicious execution

Out-of-bounds pointer Dangling Pointer Format string vuln.

Unintended Read Unintended write

1 Memory
Vulnerability

Steps taken by an adversary

60

2

3

4

5

Integrity
Violation

Exploit
Payload

Exploit
Dispatch

Exploit
Execution

6 Attack Information leak Malicious execution

Out-of-bounds pointer Dangling Pointer Format string vuln.

Unintended Read Unintended write

1 Memory
Vulnerability

Exfiltrate data Modify Code
Modify

Control Data
Modify

Non-control Data

Steps taken by an adversary

61

1

2

3

4

5

Memory
Vulnerability

Integrity
Violation

Exploit
Payload

Exploit
Dispatch

Exploit
Execution

6 Attack

Out-of-bounds pointer Dangling Pointer Format string vuln.

Unintended Read Unintended write

Information leak Malicious execution

Exfiltrate data Modify Code
Modify

Control Data
Modify

Non-control Data

Interpret
Exfiltrated data

Inject attacker-
controlled code

Inject attacker-
controlled addr.

Inject attacker-
controlled data

Steps taken by an adversary

62

1

2

3

4

5

Memory
Vulnerability

Integrity
Violation

Exploit
Payload

Exploit
Dispatch

Exploit
Execution

6 Attack

Out-of-bounds pointer Dangling Pointer Format string vuln.

Unintended Read Unintended write

Information leak Malicious execution

Exfiltrate data Modify Code
Modify

Control Data
Modify

Non-control Data

Interpret
Exfiltrated data

Inject attacker-
controlled code

Inject attacker-
controlled addr.

Inject attacker-
controlled data

Steps taken by an adversary

63

1

2

3

4

5

Memory
Vulnerability

Integrity
Violation

Exploit
Payload

Exploit
Dispatch

Exploit
Execution

6 Attack

Out-of-bounds pointer Dangling Pointer Format string vuln.

Unintended Read Unintended write

Information leak Malicious execution

Exfiltrate data Modify Code
Modify

Control Data
Modify

Non-control Data

Interpret
Exfiltrated data

Inject attacker-
controlled code

Inject attacker-
controlled addr.

Inject attacker-
controlled data

Execute
modified code

Execute injected
code fragment

Steps taken by an adversary

64

1

2

3

4

5

Memory
Vulnerability

Integrity
Violation

Exploit
Payload

Exploit
Dispatch

Exploit
Execution

6 Attack

Out-of-bounds pointer Dangling Pointer Format string vuln.

Unintended Read Unintended write

Information leak Malicious execution

Exfiltrate data Modify Code
Modify

Control Data
Modify

Non-control Data

Interpret
Exfiltrated data

Inject attacker-
controlled code

Inject attacker-
controlled addr.

Inject attacker-
controlled data

Execute
modified code

Execute injected
code fragment

Indirect jump to
corrupted addr.

Return to
corrupted addr.

Execute code
gadget

Steps taken by an adversary

65

1

2

3

Memory
Vulnerability

Integrity
Violation

Exploit
Payload

6 Attack

Out-of-bounds pointer Dangling Pointer Format string vuln.

Unintended Read Unintended write

Information leak Malicious execution

Exfiltrate data Modify Code
Modify

Control Data
Modify

Non-control Data

Interpret
Exfiltrated data

Inject attacker-
controlled code

Inject attacker-
controlled addr.

Inject attacker-
controlled data

Execute
modified code

Execute injected
code fragment

Indirect jump to
corrupted addr.

Return to
corrupted addr.

Execute code
gadget

Execute data-
oriented gadget

Use of corrupt
data

4

5

Exploit
Dispatch

Exploit
Execution

Steps taken by an adversary

66

1

2

3

4

5

Memory
Vulnerability

Integrity
Violation

Exploit
Payload

Exploit
Dispatch

Exploit
Execution

6 Attack

Out-of-bounds pointer Dangling Pointer Format string vuln.

Unintended Read Unintended write

Information leak Malicious execution

Exfiltrate data Modify Code
Modify

Control Data
Modify

Non-control Data

Interpret
Exfiltrated data

Inject attacker-
controlled code

Inject attacker-
controlled addr.

Inject attacker-
controlled data

Execute
modified code

Execute injected
code fragment

Indirect jump to
corrupted addr.

Return to
corrupted addr.

Execute code
gadget

Execute data-
oriented gadget

Use of corrupt
data

Steps taken by an adversary

67

1

2

3

4

5

Memory
Vulnerability

Integrity
Violation

Exploit
Payload

Exploit
Dispatch

Exploit
Execution

6 Attack

Out-of-bounds pointer Dangling Pointer Format string vuln.

Unintended Read Unintended write

Information leak Malicious execution

Exfiltrate data Modify Code
Modify

Control Data
Modify

Non-control Data

Interpret
Exfiltrated data

Inject attacker-
controlled code

Inject attacker-
controlled addr.

Inject attacker-
controlled data

Execute
modified code

Execute injected
code fragment

Indirect jump to
corrupted addr.

Return to
corrupted addr.

Execute code
gadget

Execute data-
oriented gadget

Use of corrupt
data

Software Testing: Fuzzing, symbolic exec., sanitizers
Memory safety: Static analysis, safe languages

Steps taken by an adversary

68

1

2

3

4

5

Memory
Vulnerability

Integrity
Violation

Exploit
Payload

Exploit
Dispatch

Exploit
Execution

6 Attack

Out-of-bounds pointer Dangling Pointer Format string vuln.

Unintended Read Unintended write

Information leak Malicious execution

Exfiltrate data Modify Code
Modify

Control Data
Modify

Non-control Data

Interpret
Exfiltrated data

Inject attacker-
controlled code

Inject attacker-
controlled addr.

Inject attacker-
controlled data

Execute
modified code

Execute injected
code fragment

Indirect jump to
corrupted addr.

Return to
corrupted addr.

Execute code
gadget

Execute data-
oriented gadget

Use of corrupt
data

Software Testing: Fuzzing, symbolic exec., sanitizers
Memory safety: Static analysis, safe languages

Software Compartmentalization: Code Integrity, Pointer
integrity, Memory Management

Steps taken by an adversary

69

1

2

3

4

5

Memory
Vulnerability

Integrity
Violation

Exploit
Payload

Exploit
Dispatch

Exploit
Execution

6 Attack

Out-of-bounds pointer Dangling Pointer Format string vuln.

Unintended Read Unintended write

Information leak Malicious execution

Exfiltrate data Modify Code
Modify

Control Data
Modify

Non-control Data

Interpret
Exfiltrated data

Inject attacker-
controlled code

Inject attacker-
controlled addr.

Inject attacker-
controlled data

Execute
modified code

Execute injected
code fragment

Indirect jump to
corrupted addr.

Return to
corrupted addr.

Execute code
gadget

Execute data-
oriented gadget

Use of corrupt
data

Software Compartmentalization: Code Integrity, Pointer
integrity, Memory Management

Software Testing: Fuzzing, symbolic exec., sanitizers
Memory safety: Static analysis, safe languages

Software Diversification: ASLR, ISR, DSR

Steps taken by an adversary

70

1

2

3

4

5

Memory
Vulnerability

Integrity
Violation

Exploit
Payload

Exploit
Dispatch

Exploit
Execution

6 Attack

Out-of-bounds pointer Dangling Pointer Format string vuln.

Unintended Read Unintended write

Information leak Malicious execution

Exfiltrate data Modify Code
Modify

Control Data
Modify

Non-control Data

Interpret
Exfiltrated data

Inject attacker-
controlled code

Inject attacker-
controlled addr.

Inject attacker-
controlled data

Execute
modified code

Execute injected
code fragment

Indirect jump to
corrupted addr.

Return to
corrupted addr.

Execute code
gadget

Execute data-
oriented gadget

Use of corrupt
data

Software Compartmentalization: Code Integrity, Pointer
integrity, Memory Management

Software Testing: Fuzzing, symbolic exec., sanitizers
Memory safety: Static analysis, safe languages

Software Diversification: ASLR, ISR, DSR

Run-time Integrity: Control Flow Integrity,
Data flow integrity

Steps taken by an adversary

71

1

2

3

4

5

Memory
Vulnerability

Integrity
Violation

Exploit
Payload

Exploit
Dispatch

Exploit
Execution

6 Attack

Out-of-bounds pointer Dangling Pointer Format string vuln.

Unintended Read Unintended write

Information leak Malicious execution

Exfiltrate data Modify Code
Modify

Control Data
Modify

Non-control Data

Interpret
Exfiltrated data

Inject attacker-
controlled code

Inject attacker-
controlled addr.

Inject attacker-
controlled data

Execute
modified code

Execute injected
code fragment

Indirect jump to
corrupted addr.

Return to
corrupted addr.

Execute code
gadget

Execute data-
oriented gadget

Use of corrupt
data

Software Compartmentalization: Code Integrity, Pointer
integrity, Memory Management

Software Testing: Fuzzing, symbolic exec., sanitizers
Memory safety: Static analysis, safe languages

Software Diversification: ASLR, ISR, DSR

Last line of defense:
W+X, DEP, Static/Run-time Attestation

Run-time Integrity: Control Flow Integrity,
Data flow integrity

Steps taken by an adversary

72

1

2

3

4

5

Memory
Vulnerability

Integrity
Violation

Exploit
Payload

Exploit
Dispatch

Exploit
Execution

6 Attack

Out-of-bounds pointer Dangling Pointer Format string vuln.

Unintended Read Unintended write

Information leak Malicious execution

Exfiltrate data Modify Code
Modify

Control Data
Modify

Non-control Data

Interpret
Exfiltrated data

Inject attacker-
controlled code

Inject attacker-
controlled addr.

Inject attacker-
controlled data

Execute
modified code

Execute injected
code fragment

Indirect jump to
corrupted addr.

Return to
corrupted addr.

Execute code
gadget

Execute data-
oriented gadget

Use of corrupt
data

Software Compartmentalization: Code Integrity, Pointer
integrity, Memory Management

Software Testing: Fuzzing, symbolic exec., sanitizers
Memory safety: Static analysis, safe languages

Software Diversification: ASLR, ISR, DSR

Last line of defense:
W+X, DEP, Static/Run-time Attestation

Run-time Integrity: Control Flow Integrity,
Data flow integrity

Root of
Trust
(RoT)

Secure Boot

OS’s

TPMs

TEEs

• Operating Systems Security
• Memory management units

(MMUs), virtualization
• Compartmentalization / Sandboxing
• Access control, capabilities

• “Usable” Security
• Authentication & attestation
• Software supply chain – attacks and

defenses (detection)

Coming up…

73

• Mobile & Hardware Security
• Android security
• Trusted Platform Modules (TPMs)
• Trusted Execution Environments

(TEEs)
• Side Channel attacks & prevention

• Non-technical security aspects
• Ethical and legal issues
• Proving Compliance in systems

Reminders & Resources
Reminders:
• A2 is due June 20

Resources:
• Dynamic Malware Analysis in the Modern Era—A State of the Art Survey
• Reflections on Trusting Trust
• SoK: Eternal War in Memory

74

https://dl.acm.org/doi/pdf/10.1145/3329786
https://dl.acm.org/doi/abs/10.1145/358198.358210
https://ieeexplore.ieee.org/abstract/document/6547101

75

	Default Section
	Slide 1: Module: Operating Systems Security
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Types of Malware
	Slide 11: Types of Malware - Virus
	Slide 12: Types of Malware - Virus
	Slide 13: Types of Malware - Worm
	Slide 14: Types of Malware - Worm
	Slide 15: Types of Malware - Worm
	Slide 16: Types of Malware – Trojan Horses
	Slide 17: Types of Malware – Trojan Horses
	Slide 18: Types of Malware – Trojan Horses
	Slide 19: Types of Malware – Logic Bomb
	Slide 20: Types of Malware – Logic Bomb
	Slide 21: Types of Malware – Logic Bomb
	Slide 22: Detecting Malware
	Slide 23: Detecting Malware
	Slide 24: Detecting Malware
	Slide 25: Detecting Malware
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Reflections on Trusting Trust
	Slide 30: Reflections on Trusting Trust
	Slide 31: Reflections on Trusting Trust
	Slide 32: Reflections on Trusting Trust
	Slide 33: Reflections on Trusting Trust
	Slide 34: Reflections on Trusting Trust
	Slide 35
	Slide 36: Adversarial Actions
	Slide 37: System Model
	Slide 38: System Model
	Slide 39: System Model
	Slide 40: System Model
	Slide 41: System Model
	Slide 42: System Model
	Slide 43: System Model
	Slide 44: Steps taken by an adversary
	Slide 45: Steps taken by an adversary
	Slide 46: Steps taken by an adversary
	Slide 47: Steps taken by an adversary
	Slide 48: Steps taken by an adversary
	Slide 49: Steps taken by an adversary
	Slide 50: Steps taken by an adversary
	Slide 51: Steps taken by an adversary
	Slide 52: Steps taken by an adversary
	Slide 53: Steps taken by an adversary
	Slide 54: Steps taken by an adversary
	Slide 55: Steps taken by an adversary
	Slide 56: Steps taken by an adversary
	Slide 57: Steps taken by an adversary
	Slide 58: Steps taken by an adversary
	Slide 59: Steps taken by an adversary
	Slide 60: Steps taken by an adversary
	Slide 61: Steps taken by an adversary
	Slide 62: Steps taken by an adversary
	Slide 63: Steps taken by an adversary
	Slide 64: Steps taken by an adversary
	Slide 65: Steps taken by an adversary
	Slide 66: Steps taken by an adversary
	Slide 67: Steps taken by an adversary
	Slide 68: Steps taken by an adversary
	Slide 69: Steps taken by an adversary
	Slide 70: Steps taken by an adversary
	Slide 71: Steps taken by an adversary
	Slide 72: Steps taken by an adversary
	Slide 73
	Slide 74: Reminders & Resources
	Slide 75

