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Reminders & Recap
Reminders:
• A2 is due June 20

Recap – last time we covered:
• Malware

• Types: virus, worm, trojan, logic bomb
• Detection methods: signature vs. behavioral

• Reflections on Trusting Trust
• We can’t trust anything, but we have to trust something
• System should have minimal & verifiable Root of Trust

• Adversary’s steps for an attack
• Security mechanisms target a step in the attack
• Design depends on other assumptions and root of trust
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https://dl.acm.org/doi/abs/10.1145/358198.358210


Today
Trust in OSes:
• Secure boot
• Inter-process isolation

Virtualization

Compartmentalization

Sandboxing
• seccomp
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System model
Recall:
• Simple computer system model

• CPU + Registers
• Bus controller
• RAM
• FLASH

• “Boot” by assigning PC to top of FLASH

Question: How do we ensure code will 
only execute if it hasn’t been modified?

Answer: Secure boot
4

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

R
A
M

F
L
A
S
H

Registers

PC



System model
Recall:
• Simple computer system model

• CPU + Registers
• Bus controller
• RAM
• FLASH

• “Boot” by assigning PC to top of FLASH

Question: How do we ensure code will 
only execute if it hasn’t been modified?

Answer: Secure boot
5

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

R
A
M

F
L
A
S
H

Registers

PC



System model
Recall:
• Simple computer system model

• CPU + Registers
• Bus controller
• RAM
• FLASH

• “Boot” by assigning PC to top of FLASH

Question: How do we ensure code will 
only execute if it hasn’t been modified?
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Secure Boot
Let’s start from scratch…

Secure boot: only start executing if the correct software  is installed

• Simplest approach:
• Compare against the original -- simple 

• Where to store the original?
• RAM?
• FLASH?
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Secure Boot
Simple approach:
• Split FLASH into two parts

• The “executable program” 
• The original for verification

• Compare them at boot

• We did it! ☺
• Efficient?
• Secure?
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Secure Boot
Simple approach:
• Split FLASH into two parts

• The “executable program” 
• The original for verification

• Compare them at boot

• Just kidding 
• Trivially insecure
• FLASH is writeable
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Secure Boot
• Read-only memory (ROM)

• A form of non-volatile memory

• Data stored in ROM cannot be electronically modified after the manufacture 
of the device

• Useful for storing information that should never change

Let’s incorporate ROM into the simple secure boot…
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Secure Boot
New approach:

• Store the original in ROM

• Compare the executable to the (now 
immutable) original

• We did it! ☺
• Secure?
• Efficient?
• Convenient?
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Secure Boot
A better idea:

• Store a hash of the original in ROM 
instead
• Using a cryptographic hash function

• At boot: 
• Compute a hash of the executable
• Compare to the hash stored in ROM

• Does it work?
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Secure Boot
Advantages of storing the hash?
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Secure Boot
Advantages of storing the hash?

Compression
• Executable = arbitrary size in flash
• H(Original) = fixed size in ROM
• Reduced and fixed ROM space

Collision Resistant:
• Due to use of cryptographically secure hash function
• Every software will always hash into a different byte string
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Secure Boot
Problems with our current version?
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Secure Boot
Problems with our current version?
ROM is installed by the manufacturer
• Therefore, the manufacturer must determine which software can run 

at manufacturing time…
• What if the software has a bug?

Who computes the hash of the executable before comparing?
• Must happen before running any software… dedicated hardware?

User has no control over the executable → not programmable!

16



Secure Boot
Problems with our current version?
ROM is installed by the manufacturer
• Therefore, the manufacturer must determine which software can run 

at manufacturing time…
• What if the software has a bug?

Who computes the hash of the executable before comparing?
• Must happen before running any software… dedicated hardware?

User has no control over the executable → not programmable!
Secure, but not practical or useful
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Secure Boot
We need a new type of memory… 

Programmable ROM 
• Aka “write-once read-many”
• Can be written to once, cannot be modified thereafter
• Assures that data cannot be tampered with after the first write
• Build using fuse hardware circuits
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Secure Boot
How about this?
• Device is manufactured with PROM
• User buys device
• User decides which code to burn in
• User computes H(code) and writes to 

PPROM

Now:
• User/owner regains control
But:
• Can program device once, and who 

checks?
19
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Secure Boot
How can we ensure:
• Only authorized code boots?
• While also allowing it to change?
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Secure Boot
How can we ensure:
• Only authorized code boots?
• While also allowing it to change?

Public key cryptography
• Use a signature to authorize the executables
• Burn the public key into secure memory
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Secure Boot
Using public-key crypto:
• User picks a secret/public key pair
• Burns the public key (pk) into PROM
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Secure Boot
Using public-key crypto:
• User picks a secret/public key pair
• Burns the public key (pk) into PROM

• User signs the executable
• S = sign(sk, executable)
• Places a S into reserved and fixed region 

of FLASH memory

• At boot: 
• Check if contents of this region contain a 

valid signature
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Secure Boot
Last remaining question: where is the check implemented?
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Secure Boot
Last remaining question: where is the check implemented?

Option 1: do everything in hardware
• Unnecessarily expensive
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Secure Boot
Last remaining question: where is the check implemented?

Option 1: do everything in hardware
• Unnecessarily expensive

Option 2: implement the checks in software
• Chicken-egg problem: 

• Now we need to check that the “checking software” hasn’t been modified?

• How do we ensure it runs first?
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Secure Boot
When the CPU boots:
• Moves “PC” to the top of flash
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Secure Boot
When the CPU boots:
• Moves “PC” to the top of flash
• So we can put our “checker” there

• The bootloader

How to we make sure it is immutable?
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Secure Boot
When the CPU boots:
• Moves “PC” to the top of flash
• So we can put our “checker” there

• The bootloader

How to we make sure it is immutable?
• Use ROM

Done!
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Secure Boot
What is in our Trusted Computing Base (TCB)?
• CPU hardware & BUS Controller
• ROM and PROM
• Bootloader code

• If bootloader code has a vulnerability, it cannot be patched
• Why

• Must use secure signature/verification algorithm
• Must be memory safe (e.g., no buffer overflows, etc)
• Buggy bootloaders have happened…
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Secure Boot

32

Read more about an example case

https://www.theregister.com/2020/10/08/apple_t2_security_chip/


Secure Boot
What is in our Trusted Computing Base (TCB)?
• CPU hardware & BUS Controller
• ROM and PROM
• Bootloader code

• If bootloader code has a vulnerability, it cannot be patched
• Why

• Must use secure signature/verification algorithm
• Must be memory safe (e.g., no buffer overflows, etc)
• Buggy bootloaders have happened…

What is secure boot’s Root of Trust? 
What is secure boot’s software Root of Trust?
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Secure Boot
This was all for simple system… what about complex system?
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Updated system model
Main differences:
• Main memory

• Instructions are also executed from RAM
• RAM contains both data and programs
• Still volatile
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Updated system model
Main differences:
• Main memory

• Instructions are also executed from RAM
• RAM contains both data and programs
• Still volatile

• Disk:
• Persistent information 
• Lager and slower than RAM
• Not executable
• Programs are stored in disk and loaded 

into RAM before execution
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Updated system model
Main differences:
• CPU

• Multi-core
• Local shared cache, speculative, pipelined
• At boot:

• Only one core is active

• BUS Controller
• Motherboard
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Updated system model
Main differences:
• CPU

• Multi-core
• Local shared cache, speculative, pipelined
• At boot:

• Only one core is active

• BUS Controller
• Motherboard
• Connects peripherals 

• Graphics card
• Network card
• Mouse, keyboard
• Often are computers themselves (simple model)
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Updated system model
New challenges:
• The HW doesn’t know where the OS 

resides or how to load it

• Bootloader is responsible for locating it, 
loading into RAM, and starting its exec

• Multiple bootable disks, with multiple 
partitions
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Updated system model
Secure boot chain in PCs:

40

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

R
A
MRegisters

DISK

Peripheral 1

Peripheral 2

Peripheral 3



Updated system model
Afterwards we have
• Running operating system

At this point, we trust that the correct OS is 
running.

What does the OS do?
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Updated system model
Afterwards we have
• Running operating system

At this point, we trust that the correct OS is 
running.

What does the OS do?
• Load other processes

• Provide isolation

• Provide access to system resources
• Disk, peripherals, etc
• Secure & indirect access
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Process isolation

Definition: 
The OS (leveraging some hardware support) is responsible for 
assuring that a given process can not interfere (read from, write to , 
tamper with) another process in the system

One of the most fundamental concepts and important goals in 
systems security!
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Process isolation

44
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Process isolation
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Process isolation
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Process isolation
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Process isolation
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Process isolation
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Privilege Levels

Definition: 
Modern systems split software into different modules, each module 
having a certain level of access to system and processor resources. 

Example:
• OS manages/controls user applications
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Updated system model
How does the OS gain higher privilege?
• It is the first software to run 

How does it provide process isolation?

Memory Management Unit (MMU)
• Translates address referenced by instructions 

based on the current process
• Virtual Address vs. Physical Addresses
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Updated system model
Quick review…

MMU Translation:
• MMU interposes every memory access by the 

CPU
• Translates it based on the current process
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Updated system model
Quick review…

MMU Translation:
• MMU interposes every memory access by the 

CPU
• Translates it based on the current process
• Processor has no choice but to access its own 

memory
• Translation is based on page tables 

• Assigned and created by OS

See CS350 lectures for more….
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Virtualization
Enables running (or simulating) multiple full computer systems
• Isolate workloads
• Run multiple operating systems atop a single host
• Strong isolation strength 

• Can create a level of separation between OS/kernel and the hardware

Various abstractions:
• Full virtualization: guest OS runs unmodified with virtualized HW

• Interfaces with a VMM

• Paravirtualization: guest OS is aware it is virtualized 
• Instrumented to interact with VMM

• Whole-system emulation: entire system is virtualized
• QEMU running in user-space

54



Baseline OS-based isolation

Virtualization Example:
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Full virtualization: Guest OS run atop Virtual Machine Manager (VMM)

Virtualization Example:
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Paravirtulization: instrument the guest kernel with hypercalls to VMM

Virtualization Example:
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Whole System Emulation: run the entire stack in user-space

Virtualization Example:
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Compartmentalization
Definition: compartmentalization of a program P is (1) a policy to 
separate P into two or more protection domains (called 
compartments), and (2) the enforcement of this policy at runtime

• They can be applied to any program
• Applications
• OS / kernels 
• Hypervisors
• Firmware

• Example:
• Within a single application, an HTTP parser and a crypto library
• Compartmentalize so bugs in HTTP parser cannot affect crpyto library
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Compartmentalization
Key Idea:
• Restrict control and data flow in the application so that each compartment has 

the permissions it requires to do its job

• An application of principle of lease privilege

Takes three steps:
1. Policy definition: how many compartments, what goes in each?
2. Data classification: what data is shared? what is private?
3. Integrate isolation mechanism & data sharing strategy
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Compartmentalization
Types of trust models: 

61
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Compartmentalization
Types of trust models: 
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Compartmentalization
Types of trust models: 
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Compartmentalization
Isolation mechanism
• Must be established outside of and before the compartment
• Similarly to OS inter-process isolation
• Intra-process isolation (e.g., sandboxing) works if the isolating logic initializes 

before the confined code

What if a compartment performs system calls?
• Application-level (intra-process) enforcement cannot make these restrictions
• Per-process flags could allow privileged operations

• See linux capabilities

• Further restrictions must be enforced at OS / kernel boundary
• How can we enable this fine-grained sandboxing?
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https://man7.org/linux/man-pages/man7/capabilities.7.html


Sandboxing 
Case study: seccomp

What if I know the exact system calls that should be used by the compartment?

seccomp: 
• Prevents execution of certain system calls by an application
• Implements a customizable filter
• Designed to sandbox untrusted code that is compute intensive 

Example: strict mode
• Only permits read(), write(), _exit(), sigreturn()
• Any other system call leads to SIGKILL
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Sandboxing 
Seccomp: uses a Berkeley Packet Filter (BPF)

Can filter based on system call number and argument values

Steps to use a BPF:
• Construct filter in the BPF rules
• Install filter using seccomp()
• exec() new program or invoke function in dynamically loaded libraries

Once installed, every system call triggers execution of filter
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Sandboxing 

BPF is stateless: 
• Filtering decision is solely based on only the current system call

Can be expanded to an extended BPF (eBPF) which are stateful
• Allows more complex to be performed quickly and safely

• Read more on seccomp
• Important highlight: “System call filtering isn’t a sandbox. It provides a clearly defined 

mechanism for minimizing the exposed kernel surface. It is meant to be a tool for sandbox 
developers to use.”

A3 → exploiting seccomp-based sandboxes
67

https://docs.kernel.org/userspace-api/seccomp_filter.html


End of class
Reminders:
• A2 due June 20
• A3 coming up

• Released June 24 
• Due July 11

Additional Resources:
• A Secure and Reliable Bootstrap Architecture

• Software Security: Princples, Policies, and Protection

• SoK: Software Compartmentalization

• [Linux Security] Understand and Practice Seccomp Syscall Filter
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https://www.cs.umd.edu/~waa/pubs/oakland97.pdf
https://nebelwelt.net/SS3P/softsec.pdf
https://www.cs.umd.edu/~waa/pubs/oakland97.pdf
https://blog.pentesteracademy.com/linux-security-understand-and-practice-seccomp-syscall-filter-37004bc4b53d
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