
Module: Operating Systems Security
Lecture: Secure Boot, Virtualization, Sandboxing, Compartmentalization

Adam Caulfield
University of Waterloo

Spring 2025

CS 453/698: Software and Systems Security

1

Reminders & Recap
Reminders:
• A2 is due June 20

Recap – last time we covered:
• Malware

• Types: virus, worm, trojan, logic bomb
• Detection methods: signature vs. behavioral

• Reflections on Trusting Trust
• We can’t trust anything, but we have to trust something
• System should have minimal & verifiable Root of Trust

• Adversary’s steps for an attack
• Security mechanisms target a step in the attack
• Design depends on other assumptions and root of trust

2

https://dl.acm.org/doi/abs/10.1145/358198.358210

Today
Trust in OSes:
• Secure boot
• Inter-process isolation

Virtualization

Compartmentalization

Sandboxing
• seccomp

3

System model
Recall:
• Simple computer system model

• CPU + Registers
• Bus controller
• RAM
• FLASH

• “Boot” by assigning PC to top of FLASH

Question: How do we ensure code will
only execute if it hasn’t been modified?

Answer: Secure boot
4

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

R
A
M

F
L
A
S
H

Registers

PC

System model
Recall:
• Simple computer system model

• CPU + Registers
• Bus controller
• RAM
• FLASH

• “Boot” by assigning PC to top of FLASH

Question: How do we ensure code will
only execute if it hasn’t been modified?

Answer: Secure boot
5

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

R
A
M

F
L
A
S
H

Registers

PC

System model
Recall:
• Simple computer system model

• CPU + Registers
• Bus controller
• RAM
• FLASH

• “Boot” by assigning PC to top of FLASH

Question: How do we ensure code will
only execute if it hasn’t been modified?

Answer: Secure boot
6

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

R
A
M

F
L
A
S
H

Registers

PC

Secure Boot
Let’s start from scratch…

Secure boot: only start executing if the correct software is installed

• Simplest approach:
• Compare against the original -- simple

• Where to store the original?
• RAM?
• FLASH?

7

Secure Boot
Simple approach:
• Split FLASH into two parts

• The “executable program”
• The original for verification

• Compare them at boot

• We did it! ☺
• Efficient?
• Secure?

8

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

R
A
M

F
L
A
S
H

Registers

Executable

Original

Secure Boot
Simple approach:
• Split FLASH into two parts

• The “executable program”
• The original for verification

• Compare them at boot

• Just kidding 
• Trivially insecure
• FLASH is writeable

9

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

R
A
M

F
L
A
S
H

Registers

Executable

Original

Secure Boot
• Read-only memory (ROM)

• A form of non-volatile memory

• Data stored in ROM cannot be electronically modified after the manufacture
of the device

• Useful for storing information that should never change

Let’s incorporate ROM into the simple secure boot…

10

Secure Boot
New approach:

• Store the original in ROM

• Compare the executable to the (now
immutable) original

• We did it! ☺
• Secure?
• Efficient?
• Convenient?

11

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

R
A
M

F
L
A
S
H

Registers

R
O
M

Executable

Original

Secure Boot
A better idea:

• Store a hash of the original in ROM
instead
• Using a cryptographic hash function

• At boot:
• Compute a hash of the executable
• Compare to the hash stored in ROM

• Does it work?

12

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

R
A
M

F
L
A
S
H

Registers

Executable

H(Original)
R
O
M

Secure Boot
Advantages of storing the hash?

13

Secure Boot
Advantages of storing the hash?

Compression
• Executable = arbitrary size in flash
• H(Original) = fixed size in ROM
• Reduced and fixed ROM space

Collision Resistant:
• Due to use of cryptographically secure hash function
• Every software will always hash into a different byte string

14

Secure Boot
Problems with our current version?

15

Secure Boot
Problems with our current version?
ROM is installed by the manufacturer
• Therefore, the manufacturer must determine which software can run

at manufacturing time…
• What if the software has a bug?

Who computes the hash of the executable before comparing?
• Must happen before running any software… dedicated hardware?

User has no control over the executable → not programmable!

16

Secure Boot
Problems with our current version?
ROM is installed by the manufacturer
• Therefore, the manufacturer must determine which software can run

at manufacturing time…
• What if the software has a bug?

Who computes the hash of the executable before comparing?
• Must happen before running any software… dedicated hardware?

User has no control over the executable → not programmable!
Secure, but not practical or useful

17

Secure Boot
We need a new type of memory…

Programmable ROM
• Aka “write-once read-many”
• Can be written to once, cannot be modified thereafter
• Assures that data cannot be tampered with after the first write
• Build using fuse hardware circuits

18

Secure Boot
How about this?
• Device is manufactured with PROM
• User buys device
• User decides which code to burn in
• User computes H(code) and writes to

PPROM

Now:
• User/owner regains control
But:
• Can program device once, and who

checks?
19

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

R
A
M

F
L
A
S
H

Registers

Executable

H(Original)
PR
OM

Secure Boot
How about this?
• Device is manufactured with PROM
• User buys device
• User decides which code to burn in
• User computes H(code) and writes to

PPROM

Now:
• User/owner regains control
But:
• Can program device once, and who

checks?
20

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

R
A
M

F
L
A
S
H

Registers

Executable

H(Original)
PR
OM

Secure Boot
How can we ensure:
• Only authorized code boots?
• While also allowing it to change?

21

Secure Boot
How can we ensure:
• Only authorized code boots?
• While also allowing it to change?

Public key cryptography
• Use a signature to authorize the executables
• Burn the public key into secure memory

22

Secure Boot
Using public-key crypto:
• User picks a secret/public key pair
• Burns the public key (pk) into PROM

23

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

R
A
M

F
L
A
S
H

Registers

Executable

pk
PR
OM

Secure Boot
Using public-key crypto:
• User picks a secret/public key pair
• Burns the public key (pk) into PROM

• User signs the executable
• S = sign(sk, executable)
• Places a S into reserved and fixed region

of FLASH memory

• At boot:
• Check if contents of this region contain a

valid signature

24

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

R
A
M

F
L
A
S
H

Registers

Executable

pk
PR
OM

S

Secure Boot
Last remaining question: where is the check implemented?

25

Secure Boot
Last remaining question: where is the check implemented?

Option 1: do everything in hardware
• Unnecessarily expensive

26

Secure Boot
Last remaining question: where is the check implemented?

Option 1: do everything in hardware
• Unnecessarily expensive

Option 2: implement the checks in software
• Chicken-egg problem:

• Now we need to check that the “checking software” hasn’t been modified?

• How do we ensure it runs first?

27

Secure Boot
When the CPU boots:
• Moves “PC” to the top of flash

28

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

R
A
M

F
L
A
S
H

Registers

Executable

pk
PR
OM

S

PC

Secure Boot
When the CPU boots:
• Moves “PC” to the top of flash
• So we can put our “checker” there

• The bootloader

How to we make sure it is immutable?

29

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

R
A
M

F
L
A
S
H

Registers

Executable

pk
PR
OM

S

PC
bootloader

Secure Boot
When the CPU boots:
• Moves “PC” to the top of flash
• So we can put our “checker” there

• The bootloader

How to we make sure it is immutable?
• Use ROM

Done!

30

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

R
A
M

F
L
A
S
H

Registers

Executable

pk
PR
OM

S

PC
bootloaderROM

Secure Boot
What is in our Trusted Computing Base (TCB)?
• CPU hardware & BUS Controller
• ROM and PROM
• Bootloader code

• If bootloader code has a vulnerability, it cannot be patched
• Why

• Must use secure signature/verification algorithm
• Must be memory safe (e.g., no buffer overflows, etc)
• Buggy bootloaders have happened…

31

Secure Boot

32

Read more about an example case

https://www.theregister.com/2020/10/08/apple_t2_security_chip/

Secure Boot
What is in our Trusted Computing Base (TCB)?
• CPU hardware & BUS Controller
• ROM and PROM
• Bootloader code

• If bootloader code has a vulnerability, it cannot be patched
• Why

• Must use secure signature/verification algorithm
• Must be memory safe (e.g., no buffer overflows, etc)
• Buggy bootloaders have happened…

What is secure boot’s Root of Trust?
What is secure boot’s software Root of Trust?

33

Secure Boot
This was all for simple system… what about complex system?

34

Updated system model
Main differences:
• Main memory

• Instructions are also executed from RAM
• RAM contains both data and programs
• Still volatile

35

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

R
A
MRegisters

Updated system model
Main differences:
• Main memory

• Instructions are also executed from RAM
• RAM contains both data and programs
• Still volatile

• Disk:
• Persistent information
• Lager and slower than RAM
• Not executable
• Programs are stored in disk and loaded

into RAM before execution

36

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

R
A
MRegisters

DISK

Updated system model
Main differences:
• CPU

• Multi-core
• Local shared cache, speculative, pipelined
• At boot:

• Only one core is active

• BUS Controller
• Motherboard

37

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

R
A
M

DISK

Registers

CPU

Registers

CPU

Registers

CPU

Registers

Updated system model
Main differences:
• CPU

• Multi-core
• Local shared cache, speculative, pipelined
• At boot:

• Only one core is active

• BUS Controller
• Motherboard
• Connects peripherals

• Graphics card
• Network card
• Mouse, keyboard
• Often are computers themselves (simple model)

38

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

R
A
M

DISK

Registers

CPU

Registers

CPU

Registers

CPU

Registers

Peripheral 1

Peripheral 2

Peripheral 3

Updated system model
New challenges:
• The HW doesn’t know where the OS

resides or how to load it

• Bootloader is responsible for locating it,
loading into RAM, and starting its exec

• Multiple bootable disks, with multiple
partitions

39

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

R
A
MRegisters

DISK

Peripheral 1

Peripheral 2

Peripheral 3

Updated system model
Secure boot chain in PCs:

40

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

R
A
MRegisters

DISK

Peripheral 1

Peripheral 2

Peripheral 3

Updated system model
Afterwards we have
• Running operating system

At this point, we trust that the correct OS is
running.

What does the OS do?

41

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

R
A
MRegisters

DISK

OS

Peripheral 1

Peripheral 2

Peripheral 3

Updated system model
Afterwards we have
• Running operating system

At this point, we trust that the correct OS is
running.

What does the OS do?
• Load other processes

• Provide isolation

• Provide access to system resources
• Disk, peripherals, etc
• Secure & indirect access

42

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

R
A
MRegisters

DISK

OS

P2

P1

Peripheral 1

Peripheral 2

Peripheral 3

Process isolation

Definition:
The OS (leveraging some hardware support) is responsible for
assuring that a given process can not interfere (read from, write to ,
tamper with) another process in the system

One of the most fundamental concepts and important goals in
systems security!

43

Process isolation

44

OS

Process isolation

45

Process 1

OS

Process 2

Process isolation

46

Process 1

OS

Process 2

Process isolation

47

Process 1

OS

Process 2

Process isolation

48

Process 1

OS

Process 2

Process isolation

49

Process 1

OS

Process 2

Privilege Levels

Definition:
Modern systems split software into different modules, each module
having a certain level of access to system and processor resources.

Example:
• OS manages/controls user applications

50

Updated system model
How does the OS gain higher privilege?
• It is the first software to run

How does it provide process isolation?

Memory Management Unit (MMU)
• Translates address referenced by instructions

based on the current process
• Virtual Address vs. Physical Addresses

51

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

R
A
M

Registers

DISK

OS

P2

P1

Peripheral 1

Peripheral 2

Peripheral 3

MMU

Updated system model
Quick review…

MMU Translation:
• MMU interposes every memory access by the

CPU
• Translates it based on the current process

52

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

R
A
M

Registers

DISK

OS

P2

P1

Peripheral 1

Peripheral 2

Peripheral 3

MMU
PC

Updated system model
Quick review…

MMU Translation:
• MMU interposes every memory access by the

CPU
• Translates it based on the current process
• Processor has no choice but to access its own

memory
• Translation is based on page tables

• Assigned and created by OS

See CS350 lectures for more….

53

CPU B
U
S

C
o
n
t
r
o
l
l
e
r

R
A
M

Registers

DISK

OS

P2

P1

Peripheral 1

Peripheral 2

Peripheral 3

MMU
PC

Virtual Physical

Virtualization
Enables running (or simulating) multiple full computer systems
• Isolate workloads
• Run multiple operating systems atop a single host
• Strong isolation strength

• Can create a level of separation between OS/kernel and the hardware

Various abstractions:
• Full virtualization: guest OS runs unmodified with virtualized HW

• Interfaces with a VMM

• Paravirtualization: guest OS is aware it is virtualized
• Instrumented to interact with VMM

• Whole-system emulation: entire system is virtualized
• QEMU running in user-space

54

Baseline OS-based isolation

Virtualization Example:

55

Process 1

OS

Process 2

Hardware

Full virtualization: Guest OS run atop Virtual Machine Manager (VMM)

Virtualization Example:

56

Process 1

VMM

Process 2

Hardware

Guest OS
Kernel

Guest OS
Kernel 2

Paravirtulization: instrument the guest kernel with hypercalls to VMM

Virtualization Example:

57

Process 1

VMM

Process 2

Hardware

Guest OS
Kernel

Guest OS
Kernel 2

Whole System Emulation: run the entire stack in user-space

Virtualization Example:

58

Process 1

QEMU

Hardware

Guest OS
Kernel

Host OS Kernel

Process 2

QEMU

Guest OS
Kernel

Compartmentalization
Definition: compartmentalization of a program P is (1) a policy to
separate P into two or more protection domains (called
compartments), and (2) the enforcement of this policy at runtime

• They can be applied to any program
• Applications
• OS / kernels
• Hypervisors
• Firmware

• Example:
• Within a single application, an HTTP parser and a crypto library
• Compartmentalize so bugs in HTTP parser cannot affect crpyto library

59

Compartmentalization
Key Idea:
• Restrict control and data flow in the application so that each compartment has

the permissions it requires to do its job

• An application of principle of lease privilege

Takes three steps:
1. Policy definition: how many compartments, what goes in each?
2. Data classification: what data is shared? what is private?
3. Integrate isolation mechanism & data sharing strategy

60

Compartmentalization
Types of trust models:

61

Process 1

Sandbox:
• Part of the program is untrusted
• Placed in a compartment to

isolated the rest of the program
from it

Compartmentalization
Types of trust models:

62

Process 1

Safebox:
• Part of the program is security

critical
• Placed in a compartment to

isolated it from the rest of the
program

Process 1

Sandbox:
• Part of the program is untrusted
• Placed in a compartment to

isolated the rest of the program
from it

Compartmentalization
Types of trust models:

63

Process 1

Safebox:
• Part of the program is security

critical
• Placed in a compartment to

isolated it from the rest of the
program

Process 1

Mutual distrust:
• Compartments all distrust

each other
• Isolated so that they cannot

access each other

Process 1

Sandbox:
• Part of the program is untrusted
• Placed in a compartment to

isolated the rest of the program
from it

Compartmentalization
Isolation mechanism
• Must be established outside of and before the compartment
• Similarly to OS inter-process isolation
• Intra-process isolation (e.g., sandboxing) works if the isolating logic initializes

before the confined code

What if a compartment performs system calls?
• Application-level (intra-process) enforcement cannot make these restrictions
• Per-process flags could allow privileged operations

• See linux capabilities

• Further restrictions must be enforced at OS / kernel boundary
• How can we enable this fine-grained sandboxing?

64

https://man7.org/linux/man-pages/man7/capabilities.7.html

Sandboxing
Case study: seccomp

What if I know the exact system calls that should be used by the compartment?

seccomp:
• Prevents execution of certain system calls by an application
• Implements a customizable filter
• Designed to sandbox untrusted code that is compute intensive

Example: strict mode
• Only permits read(), write(), _exit(), sigreturn()
• Any other system call leads to SIGKILL

65

Sandboxing
Seccomp: uses a Berkeley Packet Filter (BPF)

Can filter based on system call number and argument values

Steps to use a BPF:
• Construct filter in the BPF rules
• Install filter using seccomp()
• exec() new program or invoke function in dynamically loaded libraries

Once installed, every system call triggers execution of filter

66

Sandboxing

BPF is stateless:
• Filtering decision is solely based on only the current system call

Can be expanded to an extended BPF (eBPF) which are stateful
• Allows more complex to be performed quickly and safely

• Read more on seccomp
• Important highlight: “System call filtering isn’t a sandbox. It provides a clearly defined

mechanism for minimizing the exposed kernel surface. It is meant to be a tool for sandbox
developers to use.”

A3 → exploiting seccomp-based sandboxes
67

https://docs.kernel.org/userspace-api/seccomp_filter.html

End of class
Reminders:
• A2 due June 20
• A3 coming up

• Released June 24
• Due July 11

Additional Resources:
• A Secure and Reliable Bootstrap Architecture

• Software Security: Princples, Policies, and Protection

• SoK: Software Compartmentalization

• [Linux Security] Understand and Practice Seccomp Syscall Filter

68

https://www.cs.umd.edu/~waa/pubs/oakland97.pdf
https://nebelwelt.net/SS3P/softsec.pdf
https://www.cs.umd.edu/~waa/pubs/oakland97.pdf
https://blog.pentesteracademy.com/linux-security-understand-and-practice-seccomp-syscall-filter-37004bc4b53d

69

	Default Section
	Slide 1: Module: Operating Systems Security
	Slide 2: Reminders & Recap
	Slide 3: Today
	Slide 4: System model
	Slide 5: System model
	Slide 6: System model
	Slide 7: Secure Boot
	Slide 8: Secure Boot
	Slide 9: Secure Boot
	Slide 10: Secure Boot
	Slide 11: Secure Boot
	Slide 12: Secure Boot
	Slide 13: Secure Boot
	Slide 14: Secure Boot
	Slide 15: Secure Boot
	Slide 16: Secure Boot
	Slide 17: Secure Boot
	Slide 18: Secure Boot
	Slide 19: Secure Boot
	Slide 20: Secure Boot
	Slide 21: Secure Boot
	Slide 22: Secure Boot
	Slide 23: Secure Boot
	Slide 24: Secure Boot
	Slide 25: Secure Boot
	Slide 26: Secure Boot
	Slide 27: Secure Boot
	Slide 28: Secure Boot
	Slide 29: Secure Boot
	Slide 30: Secure Boot
	Slide 31: Secure Boot
	Slide 32: Secure Boot
	Slide 33: Secure Boot
	Slide 34: Secure Boot
	Slide 35: Updated system model
	Slide 36: Updated system model
	Slide 37: Updated system model
	Slide 38: Updated system model
	Slide 39: Updated system model
	Slide 40: Updated system model
	Slide 41: Updated system model
	Slide 42: Updated system model
	Slide 43: Process isolation
	Slide 44: Process isolation
	Slide 45: Process isolation
	Slide 46: Process isolation
	Slide 47: Process isolation
	Slide 48: Process isolation
	Slide 49: Process isolation
	Slide 50: Privilege Levels
	Slide 51: Updated system model
	Slide 52: Updated system model
	Slide 53: Updated system model
	Slide 54: Virtualization
	Slide 55: Virtualization Example:
	Slide 56: Virtualization Example:
	Slide 57: Virtualization Example:
	Slide 58: Virtualization Example:
	Slide 59: Compartmentalization
	Slide 60: Compartmentalization
	Slide 61: Compartmentalization
	Slide 62: Compartmentalization
	Slide 63: Compartmentalization
	Slide 64: Compartmentalization
	Slide 65: Sandboxing
	Slide 66: Sandboxing
	Slide 67: Sandboxing
	Slide 68: End of class
	Slide 69

