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What is a race condition?
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Wikipedia’s definition

A race condition is the condition of a software system where
the system’s substantive behavior is dependent on the sequence
or timing of other uncontrollable events, leading to unexpected
or inconsistent results.

It becomes a bug when one or more of the possible behaviors is
undesirable.
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What is a data race?
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Data race definition in C++ standard

When

an evaluation of an expression writes to a memory location and
another evaluation reads or modifies the same memory location,

the expressions are said to conflict.

A program that has two conflicting evaluations has a data race unless:

both evaluations execute on the same thread, or
both conflicting evaluations are atomic operations, or
one of the conflicting evaluations happens-before another.

Adapted from a community-backed C++ reference site. For the full
version, please refer to the related sections in C++ working draft.
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Introduction Simple Atomicity Locks Other

An intuitive definition

Intuitively, a data race happens when:

1 There are two memory accesses from different threads.

2 Both accesses target the same memory location.

3 At least one of them is a write operation.

4 Both accesses could interleave freely without restrictions such as
synchronization primitives or causality relations.
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Test of your understanding

Q: Based on the definition of race condition and data race, what do
you think are the relationship between them?
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Introductory case

global var count = 0

for(i = 0; i < x; i++) {
/* do sth critical */

......

count++;

}

Thread 1

for(i = 0; i < y; i++) {
/* do sth critical */

......

count++;

}

Thread 2

Q: What is the value of count when both threads terminate?
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Introductory case
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Race conditions in other settings

Race conditions are not tied to a specific programming language,
instead, they are tied to data sharing in concurrent execution.

For example, in the database context:

Q: If two database clients send the following requests concurrently,
what will be the result (both try to withdraw $100 from Alice)?

Client 1
SELECT @balance = Balance

FROM Ledger WHERE Name = "Alice";

UPDATE Ledger SET Balance =

@balance - 100 WHERE Name = "Alice";

Client 2
SELECT @balance = Balance

FROM Ledger WHERE Name = "Alice";

UPDATE Ledger SET Balance =

@balance - 100 WHERE Name = "Alice";

11 / 39



Introduction Simple Atomicity Locks Other

Race conditions in other settings

Race conditions are not tied to a specific programming language,
instead, they are tied to data sharing in concurrent execution.

For example, in the database context:

Q: If two database clients send the following requests concurrently,
what will be the result (both try to withdraw $100 from Alice)?

Client 1
SELECT @balance = Balance

FROM Ledger WHERE Name = "Alice";

UPDATE Ledger SET Balance =

@balance - 100 WHERE Name = "Alice";

Client 2
SELECT @balance = Balance

FROM Ledger WHERE Name = "Alice";

UPDATE Ledger SET Balance =

@balance - 100 WHERE Name = "Alice";

11 / 39



Introduction Simple Atomicity Locks Other

Race conditions in a database setting

One possible interleaving (that messes up the states)

SELECT @balance = Balance FROM Ledger WHERE Name = "Alice";

SELECT @balance = Balance FROM Ledger WHERE Name = "Alice";

UPDATE Ledger SET Balance = @balance - 100 WHERE Name = "Alice";

UPDATE Ledger SET Balance = @balance - 100 WHERE Name = "Alice";

Q: How to prevent the race condition in this case?

Interleavings with transactions
BEGIN TRANSACTION;

SELECT @balance = Balance FROM Ledger WHERE Name = "Alice";

UPDATE Ledger SET Balance = @balance - 100 WHERE Name = "Alice";

COMMIT TRANSACTION;

BEGIN TRANSACTION;

SELECT @balance = Balance FROM Ledger WHERE Name = "Alice";

UPDATE Ledger SET Balance = @balance - 100 WHERE Name = "Alice";

COMMIT TRANSACTION;
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Revisit the example

global var count = 0

for(i = 0; i < x; i++) {
count++;

}

Thread 1

for(i = 0; i < y; i++) {
count++;

}

Thread 2

Q: Is it a data race?
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Free interleavings of memory reads and writes

Thread 1 Thread 2
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Revisit the example

global var count = 0

for(i = 0; i < x; i++) {
lock(mutex);

count++;

unlock(mutex);

}

Thread 1

for(i = 0; i < y; i++) {
lock(mutex);

count++;

unlock(mutex);

}

Thread 2

15 / 39



Introduction Simple Atomicity Locks Other

Limited interleavings with locking

Thread 1 Thread 2
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Revisiting the definition

Intuitively, a data race happens when:

1 There are two memory accesses from different threads.

2 Both accesses target the same memory location.

3 At least one of them is a write operation.

4 Both accesses could interleave freely without restrictions such as
synchronization primitives

(((((((((((hhhhhhhhhhh
or causality relations.
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Causality relations: an example

1 #include <stdio.h>
2 #include <pthread.h>
3

4 int g_x;
5 int g_y;
6

7 void* foo(void* p){
8 printf("Value of g_x: %d\n", g_x);
9 printf("Value of arg: %d\n", *(int *)p);

10 pthread_exit(&g_y);
11 }
12

13 int main(void){
14 int g_x = 1;
15 int arg = 2;
16

17 pthread_t id;
18 pthread_create(&id, NULL, foo, &arg);
19 pthread_join(id, NULL);
20

21 printf("Return value from thread: %d\n", g_y);
22 }
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Causality relations

Thread 1 Thread 2

Wvar g_x

Wvar arg

pthread_create

pthread_join

Rvar g_y

<thread start>

R var g_x

R var arg

W var g_y

<thread end>
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Revisit the example

global var count = 0

for(i = 0; i < x; i++) {
lock(mutex);

t = count;

unlock(mutex);

t++;

lock(mutex);

count = t;

unlock(mutex);

}

Thread 1

for(i = 0; i < y; i++) {
lock(mutex);

t = count;

unlock(mutex);

t++;

lock(mutex);

count = t;

unlock(mutex);

}

Thread 2
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Revisit the example

Q: In this modified example, is there a data race?

A: No

Q: But the results are the same with all locks removed?

global var count = 0

for(i = 0; i < x; i++) {
t = count;

t++;

count = t;

}

for(i = 0; i < y; i++) {
t = count;

t++;

count = t;

}

A: No, depending on how hardware works (e.g., per-bit conflict)
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Reading developers’ mind

Q: What is developers’ expectation in the running example?

A: States do not change for a critical section during execution.

A: Generalization: states remain integral for a critical section
during execution. No change of states is just one way of remaining
integral (assuming state is integral before the critical section).
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State integrity example

1 struct R { x: int, y: int } g;
2 [invariant] g.x + g.y == 100;

1 int add_x(v: int) {
2 g.x += v;
3 g.y -= v;
4 }

Thread 1

1 int add_y(v: int) {
2 g.y += v;
3 g.x -= v;
4 }

Thread 2
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State integrity example

1 struct R { x: int, y: int } g;
2 [invariant] g.x + g.y == 100;
3 lock mutex = unlocked;

1 int add_x(v: int) {
2 lock(mutex);
3 g.x += v;
4 unlock(mutex);
5 lock(mutex);
6 g.y -= v;
7 unlock(mutex);
8 }

Thread 1

1 int add_y(v: int) {
2 lock(mutex);
3 g.y += v;
4 unlock(mutex);
5 lock(mutex);
6 g.x -= v;
7 unlock(mutex);
8 }

Thread 2

Q: Is this the right way of adding locks?

A: No, as the invariant is not guaranteed
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State integrity is hard to capture

However, in practice, the invariant often exists in

some architectural design documents (which no one reads)

code comments in a different file (which no one notices)

forklore knowledge among the dev team

the mind of the developer who has resigned a few years ago...
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4 Bonus: lock implementation

5 Other forms of races
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Common synchronization primitives

Lock / Mutex / Critical section

Read-write lock

Barrier

Semaphore
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How are synchronization primitives implemented?

Hardware support

- Atomic swap
- Atomic read-modify-write

* compare-and-swap
* test-and-set
* fetch-and-add
* ......

Software algorithms

- Dekker’s algorithm
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Spinlock with atomic swap (xchg)
1 locked: ; The lock variable. 1 = locked, 0 = unlocked.
2 dd 0
3

4 spin_lock:
5 mov eax, 1 ; Set the EAX register to 1.
6 xchg eax, [locked] ; Atomically swap the EAX register with
7 ; the lock variable.
8 ; This will always store 1 to the lock, leaving
9 ; the previous value in the EAX register.

10 test eax, eax ; Test EAX with itself. Among other things, this
11 ; will set the processor’s Zero Flag if EAX is 0.
12 ; If EAX is 0, then the lock was unlocked and
13 ; we just locked it.
14 ; Otherwise, EAX is 1 and we didn’t acquire the lock.
15 jnz spin_lock ; Jump back to the MOV instruction if the Zero Flag is
16 ; not set; the lock was previously locked, and so
17 ; we need to spin until it becomes unlocked.
18 ret ; The lock has been acquired, return to the caller.
19

20 spin_unlock:
21 xor eax, eax ; Set the EAX register to 0.
22 xchg eax, [locked] ; Atomically swap the EAX register with
23 ; the lock variable.
24 ret ; The lock has been released.
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Spinlock with atomic swap (xchg)

Q: Are there data races or race conditions in spinlock
implementation?

A: By looking at the code

Data race: Yes, but hardware guarantees atomicity

Race condition: No
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Dekker’s algorithm

1 atomic_bool wants_to_enter[2] = {false, false};
2 int turn = 0; /* or turn = 1 */

1 // lock
2 wants_to_enter[0] = true;
3 while (wants_to_enter[1]) {
4 if (turn != 0) {
5 wants_to_enter[0] = false;
6 // busy wait
7 while (turn != 0) {}
8 wants_to_enter[0] = true;
9 }

10 }
11

12 /* ... critical section ... */
13

14 // unlock
15 turn = 1;
16 wants_to_enter[0] = false;

Thread 1

1 // lock
2 wants_to_enter[1] = true;
3 while (wants_to_enter[0]) {
4 if (turn != 1) {
5 wants_to_enter[1] = false;
6 // busy wait
7 while (turn != 1) {}
8 wants_to_enter[1] = true;
9 }

10 }
11

12 /* ... critical section ... */
13

14 // unlock
15 turn = 0;
16 wants_to_enter[1] = false;

Thread 2
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Dekker’s algorithm

Q: Are there data races or race conditions in Dekker’s algorithm?

A: By looking at the code

Data race: No (assuming atomic_bool)

Race condition: No
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A more abstract view of race conditions

Q: Why do race conditions happen in the first place?

A: Because two threads in the same process share memory

We can further generalize this concept by asking:

Q: What else do they share?
Q: What about other entities that may run concurrently?
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Example: race over the filesystem

1 #include <...>
2

3 int main(int argc, char *argv[]) {
4 FILE *fd;
5 struct stat buf;
6

7 if (stat("/some_file", &buf)) {
8 exit(1); // cannot read stat message
9 }

10

11 if (buf.st_uid != getuid()) {
12 exit(2); // permission denied
13 }
14

15 fd = fopen("/some_file", "wb+");
16 if (fd == NULL) {
17 exit(3); // unable to open the file
18 }
19

20 fprintf(f, "<some-secret-value>");
21 fclose(fd);
22 return 0;
23 }
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Example: the Dirty COW exploit

CVE-2016-5195

Allows local privilege escalation: user(1000) → root(0).

Existed in the kernel for nine years before finally patched.

Details on the Website.
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⟨ End ⟩
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