
CS 453/698: Software and Systems Security

Meng Xu (University of Waterloo)

Module: Other Common Vulnerability Types
Lecture: Side-channels

Spring 2025

Intro Const-time

Outline

1 What is a side-channel?

2 Constant-time programming

2 / 29

Intro Const-time

How to steal sensitive information?

Install a malware (spyware) on the victim’s computing device

e.g., screen hijacking, drive-by downloads

Exploit a vulnerability in victim’s software

e.g., heartbleed, log4j, etc.

Compromised operating system, hypervisor, or hardware

e.g., key logger, buggy virtualization layer, etc.

Side channels

e.g., timing, bandwidth, power, etc.

3 / 29

Intro Const-time

How to steal sensitive information?

Install a malware (spyware) on the victim’s computing device

e.g., screen hijacking, drive-by downloads

Exploit a vulnerability in victim’s software

e.g., heartbleed, log4j, etc.

Compromised operating system, hypervisor, or hardware

e.g., key logger, buggy virtualization layer, etc.

Side channels

e.g., timing, bandwidth, power, etc.

3 / 29

Intro Const-time

How to steal sensitive information?

Install a malware (spyware) on the victim’s computing device

e.g., screen hijacking, drive-by downloads

Exploit a vulnerability in victim’s software

e.g., heartbleed, log4j, etc.

Compromised operating system, hypervisor, or hardware

e.g., key logger, buggy virtualization layer, etc.

Side channels

e.g., timing, bandwidth, power, etc.

3 / 29

Intro Const-time

How to steal sensitive information?

Install a malware (spyware) on the victim’s computing device

e.g., screen hijacking, drive-by downloads

Exploit a vulnerability in victim’s software

e.g., heartbleed, log4j, etc.

Compromised operating system, hypervisor, or hardware

e.g., key logger, buggy virtualization layer, etc.

Side channels

e.g., timing, bandwidth, power, etc.

3 / 29

Intro Const-time

How to steal sensitive information?

Install a malware (spyware) on the victim’s computing device

e.g., screen hijacking, drive-by downloads

Exploit a vulnerability in victim’s software

e.g., heartbleed, log4j, etc.

Compromised operating system, hypervisor, or hardware

e.g., key logger, buggy virtualization layer, etc.

Side channels

e.g., timing, bandwidth, power, etc.

3 / 29

Intro Const-time

Locard’s exchange principle

In forensic science, Locard’s principle holds that: the perpetrator
of a crime will bring something into the crime scene and leave with
something from it, and that both can be used as forensic evidence.

−→ “Every contact leaves a trace”

Wherever he steps, whatever he touches, whatever he leaves,
even unconsciously, will serve as a silent witness against him.
Not only his fingerprints or his footprints, but his hair, the
fibres from his clothes, the glass he breaks, the tool mark he
leaves, the paint he scratches, the blood or semen he deposits
or collects. All of these and more, bear mute witness against
him. This is evidence that does not forget.

— Paul L. Kirk

4 / 29

Intro Const-time

Locard’s exchange principle

In forensic science, Locard’s principle holds that: the perpetrator
of a crime will bring something into the crime scene and leave with
something from it, and that both can be used as forensic evidence.

−→ “Every contact leaves a trace”

Wherever he steps, whatever he touches, whatever he leaves,
even unconsciously, will serve as a silent witness against him.
Not only his fingerprints or his footprints, but his hair, the
fibres from his clothes, the glass he breaks, the tool mark he
leaves, the paint he scratches, the blood or semen he deposits
or collects. All of these and more, bear mute witness against
him. This is evidence that does not forget.

— Paul L. Kirk

4 / 29

Intro Const-time

Locard’s exchange principle

In forensic science, Locard’s principle holds that: the perpetrator
of a crime will bring something into the crime scene and leave with
something from it, and that both can be used as forensic evidence.

−→ “Every contact leaves a trace”

Wherever he steps, whatever he touches, whatever he leaves,
even unconsciously, will serve as a silent witness against him.
Not only his fingerprints or his footprints, but his hair, the
fibres from his clothes, the glass he breaks, the tool mark he
leaves, the paint he scratches, the blood or semen he deposits
or collects. All of these and more, bear mute witness against
him. This is evidence that does not forget.

— Paul L. Kirk

4 / 29

Intro Const-time

Locard’s exchange principle (in code execution)

In forensic science, Locard’s principle holds that: the perpetrator
of a crime execution of code will bring something into the crime
scene hosting platform and leave with something from it, and that
both can be used as forensic evidence side channels.

−→ “Every contact leaves a trace”

Wherever he steps Every CPU instruction executed, whatever
he touches every memory access, whatever he leaves every IO
operation, even unconsciously, will serve as a silent witness
against him the code.

5 / 29

Intro Const-time

Locard’s exchange principle (in code execution)

In forensic science, Locard’s principle holds that: the perpetrator
of a crime execution of code will bring something into the crime
scene hosting platform and leave with something from it, and that
both can be used as forensic evidence side channels.

−→ “Every contact leaves a trace”

Wherever he steps Every CPU instruction executed, whatever
he touches every memory access, whatever he leaves every IO
operation, even unconsciously, will serve as a silent witness
against him the code.

5 / 29

Intro Const-time

My personal story

6 / 29

Intro Const-time

Examples of side channels

Bandwidth consumption

Reflections

Cache-timing channels

7 / 29

Intro Const-time

Bandwidth consumption: scenario

Eve observes communication going via Alice’s Router

Alice accesses health forum via encrypted connection

Eve knows that Alice connects to health forum

But cannot decrypt downloaded content

8 / 29

Intro Const-time

Bandwidth consumption: attack

Eve determines size of all pages on health forum

Eve measures size of Alice’s downloaded pages

Likely: Eve can uniquely map download to page

This attack is called webpage fingerprinting

- or website fingerprinting, when targeting landing pages

9 / 29

Intro Const-time

Bandwidth consumption: defense

Pad all pages to common size (inflexible + inefficient)

Dynamic personalized websites

(Finally a benefit of targeted advertisement)

10 / 29

Intro Const-time

Bandwidth consumption: another example

Re-identification of Netflix video streaming

Burst sizes of a streamed scene of “Reservoir Dogs”

- Very similar, even when watched over different networks

Schuster et al., USENIX SEC ’17

11 / 29

https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-schuster.pdf

Intro Const-time

Reflections: scenario

Alice types her password on a device in a public place

Alice hides her screen

But there is a reflecting surface close by

12 / 29

Intro Const-time

Reflections: attack

Eve uses a camera and a telescope

Off-the-shelf: less than CA$2,000
Photograph reflection of screen through telescope

Reconstruct original image

Distance: 10–30 m

Depends on equipment and type of reflecting surface

13 / 29

Intro Const-time

Reflections: defense

14 / 29

Intro Const-time

Other potential attack vectors

Timing computations

Electromagnetic emission

Sound emissions

Power consumption

Differential power analysis

Differential fault analysis

15 / 29

Intro Const-time

Outline

1 What is a side-channel?

2 Constant-time programming

16 / 29

Intro Const-time

Example 1: matrix multiplication

1 int *matrix_multiply(
2 /* __secret__ */ int *A, size_t nrow_A, size_t ncol_A,
3 /* __secret__ */ int *B, size_t nrow_B, size_t ncol_B
4) {
5 assert(ncol_A == nrow_B);
6 int *C = malloc(nrow_A * ncol_B * sizeof(int));
7

8 for(int i = 0; i < nrow_A; i++) {
9 for(int j = 0; j < ncol_B; j++) {

10 for(int k = 0; k < A_ncol; k++) {
11 C[i * ncol_B + j] += A[i * ncol_A + k] * B[k * ncol_B + j];
12 }
13 }
14 }
15 return C;
16 }

Q: Is the above function constant-time (w.r.t secret input)?

A: Yes

17 / 29

Intro Const-time

Example 1: matrix multiplication

1 int *matrix_multiply(
2 /* __secret__ */ int *A, size_t nrow_A, size_t ncol_A,
3 /* __secret__ */ int *B, size_t nrow_B, size_t ncol_B
4) {
5 assert(ncol_A == nrow_B);
6 int *C = malloc(nrow_A * ncol_B * sizeof(int));
7

8 for(int i = 0; i < nrow_A; i++) {
9 for(int j = 0; j < ncol_B; j++) {

10 for(int k = 0; k < A_ncol; k++) {
11 C[i * ncol_B + j] += A[i * ncol_A + k] * B[k * ncol_B + j];
12 }
13 }
14 }
15 return C;
16 }

Q: Is the above function constant-time (w.r.t secret input)?

A: Yes

17 / 29

Intro Const-time

Example 1: find max

1 int find_max(/* __secret__ */ int *arr, int n) {
2 int max_val = INT_MINIMUM;
3 for (int i = 0; i < n; i++) {
4 if (arr[i] > max_val) {
5 max_val = arr[i];
6 }
7 }
8 return max_val;
9 }

Q: Is the above function constant-time (w.r.t secret input)?

18 / 29

Intro Const-time

Example 1: find max (patched)

1 int find_max(/* __secret__ */ int *arr, int n) {
2 int max_val = INT_MINIMUM;
3 for (int i = 0; i < n; i++) {
4 int predicate = arr[i] > max_val;
5 max_val = (predicate * arr[i])
6 | (!predicate * max_val);
7 }
8 return max_val;
9 }

19 / 29

Intro Const-time

Example 2: get element

1 int get_element(
2 int *arr, int size, /* __secret__ */ int index
3) {
4 int element = arr[index];
5 return element;
6 }

Q: Is the above function constant-time (w.r.t secret input)?

20 / 29

Intro Const-time

Example 2: get element (patched)

1 int get_element(
2 int *arr, int size, /* __secret__ */ int index
3) {
4 int element = 0;
5 for (int i = 0; i < size; i++) {
6 int value = arr[i];
7 element = select(i == index, value, element);
8 }
9 return element;

10 }

21 / 29

Intro Const-time

Example 3: constant-time instructions

1 void foo(double x) {
2 double z, y = 1.0;
3 for (long i = 0; i < 100000000; i++) {
4 z = y * x;
5 }
6 }

Q: Which of the following execution is faster?

1 foo(1.0)

2 foo(1.0e-323)

3 they are the same

A: foo(1.0)

22 / 29

Intro Const-time

Example 3: constant-time instructions

1 void foo(double x) {
2 double z, y = 1.0;
3 for (long i = 0; i < 100000000; i++) {
4 z = y * x;
5 }
6 }

Q: Which of the following execution is faster?

1 foo(1.0)

2 foo(1.0e-323)

3 they are the same

A: foo(1.0)

22 / 29

Intro Const-time

Rules of thumb for constant-time programming

Avoid variable-time instructions

If-statements on secrets are unsafe

Memory accesses indexed by secrets are unsafe

There are tools to help but most constant-time code is still
written by hand

23 / 29

Intro Const-time

Constant-trace programming

A stronger version of constant-time programming: the same
execution trace for all sensitive inputs.

24 / 29

Intro Const-time

Example 4: copy sub-array

1 void copy_subarray(
2 /* secret */ char *out, /* secret */ char *in,
3 uint32_t arr_len,
4 uint32_t sub_len,
5 /* secret */ uint32_t l_idx
6) {
7 uint32_t i, j;
8 for(i = 0, j = 0; i < arr_len; i++) {
9 if (i >= l_idx && i < l_idx + sub_len) {

10 out[j] = in[i];
11 j++;
12 }
13 }
14 }

Q: How to make the above function constant-trace?

25 / 29

Intro Const-time

Example 4a: copy sub-array (fix-1)

1 // returns 0xffffffff if a < b, 0x0 otherwise
2 uint32_t ct_lt(uint32_t a, uint32_t b) {
3 uint32_t c = a ˆ ((a ˆ b) | ((a - b) ˆ b));
4 return (0 - (c >> (sizeof(c) * 8 - 1))) ;
5 }
6

7 void copy_subarray(
8 /* secret */ char *out, /* secret */ char *in,
9 uint32_t arr_len,

10 uint32_t sub_len,
11 /* secret */ uint32_t l_idx
12) {
13 uint32_t i, j, in_range;
14 for(i = 0; i < sub_len; i++) {
15 out[i] = 0;
16 }
17 for(i = 0, j < 0; i < arr_len; i++) {
18 in_range = 0;
19 in_range |= ˜ct_lt(i, l_idx);
20 in_range &= ct_lt(i, l_idx + sub_len);
21 out[j] |= in[i] & in_range;
22 j = j + (in_range & 1);
23 }
24 }

Q: Is this constant-trace?

26 / 29

Intro Const-time

Example 4b: copy sub-array (fix-2)

1 // returns 0xffffffff if a == b, 0x0 otherwise
2 uint32_t ct_lt(uint32_t a, uint32_t b) {
3 uint32_t c = a ˆ b;
4 uint32_t d = ˜c & (c - 1);
5 return (0 - (d >> (sizeof(d) * 8 - 1)));
6 }
7

8 void copy_subarray(
9 /* secret */ char *out, /* secret */ char *in,

10 uint32_t arr_len,
11 uint32_t sub_len,
12 /* secret */ uint32_t l_idx
13) {
14 uint32_t i, j, in_range;
15 for(i = 0; i < sub_len; i++) {
16 out[i] = 0;
17 }
18 for(i = 0; i < sub_len; i++) {
19 for(j = 0; j < arr_len; j++) {
20 out[j] |= in[i] & ct_eq(l_idx + j, i);
21 }
22 }
23 }

Q: Is this constant-trace?

27 / 29

Intro Const-time

Reference

For more information on constant-time programming, start with the
following paper: Verifying Constant-Time Implementations

28 / 29

https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_almeida.pdf

Intro Const-time

⟨ End ⟩

29 / 29

	What is a side-channel?
	Constant-time programming

