CS 453/698: Software and Systems Security

Module: Research Lecture
Lecture: Research in Software and Systems Security
Adam Caulfield

University of Waterloo
Spring 2025

Reminders & Recap

Reminders:

* Mini Research Project is due tomorrow!

e Course Evaluations = “Student Course Perceptions”

https://watssec.github.io/cs453-s25/assignments/research/
https://watssec.github.io/cs453-s25/assignments/research/

Reminders & Recap

Student Course Perceptions status: make your voices heard!

Progress

Your survey is currently live. Below is the current number of registered students for this course vs. the number of surveys
currently registered as completed. If your survey end-date is drawing near and your response-rate is lower than expexted,
it may be useful to remind your students that these online evaluations are offical and important to you.

Total Students: 52 Surveys Completed: 7

If the dates listed above are wrong, or there is an issue with this evaluation, please contact your administrator. This course
was configured by m2martin@uwaterloo.ca.

2

Number of Responses

Jul 17 Jul 19 Jul 21 Jul 23 Jul 25 Jul 27 Jul 29

Response Times (Grouped into 4hr Blocks)

Note: There are two for this course (one per half), so make sure to do both! 3

Reminders & Recap

Reminders:

* Mini Research Project is due tomorrow!

e Course Evaluations = “Student Course Perceptions”

Recap - last time we covered:

Ethics, legal issues, laws, compliance

https://watssec.github.io/cs453-s25/assignments/research/
https://watssec.github.io/cs453-s25/assignments/research/

Follow up from last time...

SONY Press release from over the weekend

SONY L wySony @) q —

Press Centre Mews Images & Videos Contacts

Sony launches "Camera Verify" feature for its
Camera Authenticity Solution for News
Organisations

Tha f f o e T e alal= . 1 charf / NS T3] f Fieitrse 1 - e = a3 tad | 2]
I he Deta reature enables external sharing Of.‘.m&‘gc‘ authenticity information via a dedicated URL

Q, Search Press Centre

{) B2B, DI
26 June 2025

(9 3 min read

SONY Press Centre (UK)

https://www.sony.co.uk/presscentre/sony-launches-camera-verify-feature-for-its-camera-authenticity-solution-for-news-organisations
https://www.sony.co.uk/presscentre/sony-launches-camera-verify-feature-for-its-camera-authenticity-solution-for-news-organisations
https://www.sony.co.uk/presscentre/sony-launches-camera-verify-feature-for-its-camera-authenticity-solution-for-news-organisations

Follow up from last time...

SONY Press release from over the weekend

SONY Press Centre (UK)

Weybridge, June 26, 2025 - Today, Sony announced the beta release of Camera Verify, a
new feature of its Camera Authenticity Solution', that enables external sharing of
image authenticity information via a dedicated URL. This has been developed to help
news organisations address the growing challenge of verifying the authenticity of
digital images in the age of generative Al.

As Al-generated and manipulated content becomes increasingly sophisticated, the
need for trusted, verifiable imagery has never been greater, especially for media
professionals. Sony's Camera Authenticity Solution is designed to meet this need by
embedding C2PA (Coalition for Content Provenance and Authenticity)? digital
signatures and Sony's proprietary 3D depth information directly into the image at the
moment of capture.

This solution records C2PA digital signatures and Sony's proprietary 3D depth
information in the camera at the moment of capture, allowing the image's authenticity
information to be verified on the Image Validation site3. With the newly added
"Camera Verify" (beta), news organisations can now issue external sharing URLs for
images with embedded digital signatures allowing third parties to view verification
results through reliable URLs directly issued by the verification site®. With this feature,
organisations can select specific authenticity items to share during the content
publication and distribution process, enabling faster dissemination of credible,
verifiable content.

https://www.sony.co.uk/presscentre/sony-launches-camera-verify-feature-for-its-camera-authenticity-solution-for-news-organisations
https://www.sony.co.uk/presscentre/sony-launches-camera-verify-feature-for-its-camera-authenticity-solution-for-news-organisations
https://www.sony.co.uk/presscentre/sony-launches-camera-verify-feature-for-its-camera-authenticity-solution-for-news-organisations

Follow up from last time...

SONY Press release from over the weekend

SONY Press Centre (UK)

Weybridge, June 26, 2025 - Today, Sony announced the beta release of Camera Verify, a
new feature of its Camera Authenticity Solution', that enables external sharing of
image authenticity information via a dedicated URL. This has been developed to help
news organisations address the growing challenge of verifying the authenticity of
digital images in the age of generative Al.

As Al-generated and manipulated content becomes increasingly sophisticated, the
need for trusted, verifiable imagery has never been greater, especially for media

professionals. Sony's Camera Authenticity Solution is designed to meet this need by
embedding C2PA (Coalition for Content Provenance and Authenticity)? digital
signatures and Sony's proprietary 3D depth information directly into the image at the
moment of capture.

This solution records C2PA digital signatures and Sony's proprietary 3D depth
information in the camera at the moment of capture, allowing the image's authenticity
information to be verified on the Image Validation site3. With the newly added
"Camera Verify" (beta), news organisations can now issue external sharing URLs for
images with embedded digital signatures allowing third parties to view verification
results through reliable URLs directly issued by the verification site®. With this feature,
organisations can select specific authenticity items to share during the content
publication and distribution process, enabling faster dissemination of credible,
verifiable content.

https://www.sony.co.uk/presscentre/sony-launches-camera-verify-feature-for-its-camera-authenticity-solution-for-news-organisations
https://www.sony.co.uk/presscentre/sony-launches-camera-verify-feature-for-its-camera-authenticity-solution-for-news-organisations
https://www.sony.co.uk/presscentre/sony-launches-camera-verify-feature-for-its-camera-authenticity-solution-for-news-organisations

Follow up from last time...

SONY Press release from over the weekend

SONY Press Centre (UK)

Weybridge, June 26, 2025 - Today, Sony announced the beta release of Camera Verify, a
new feature of its Camera Authenticity Solution', that enables external sharing of
image authenticity information via a dedicated URL. This has been developed to help
news organisations address the growing challenge of verifying the authenticity of
digital images in the age of generative Al.

As Al-generated and manipulated content becomes increasingly sophisticated, the
need for trusted, verifiable imagery has never been greater, especially for media
professionals. Sony's Camera Authenticity Solution is designed to meet this need by
embedding C2PA (Coalition for Content Provenance and Authenticity)? digital
signatures and Sony's proprietary 3D depth information directly into the image at the
moment of capture.

This solution records C2PA digital signatures and Sony's proprietary 3D depth
information in the camera at the moment of capture, allowing the image's authenticity
information to be verified on the Image Validation site3. With the newly added
"Camera Verify" (beta), news organisations can now issue external sharing URLs for
images with embedded digital signatures allowing third parties to view verification
results through reliable URLs directly issued by the verification site®. With this feature,

organisations can select specific authenticity items to share during the content
publication and distribution process, enabling faster dissemination of credible,
verifiable content.

https://www.sony.co.uk/presscentre/sony-launches-camera-verify-feature-for-its-camera-authenticity-solution-for-news-organisations
https://www.sony.co.uk/presscentre/sony-launches-camera-verify-feature-for-its-camera-authenticity-solution-for-news-organisations
https://www.sony.co.uk/presscentre/sony-launches-camera-verify-feature-for-its-camera-authenticity-solution-for-news-organisations

Other Research in Systems and Software Security

Embedded Systems
* How does the system model change?

* What type of system-level support is available in today’s devices?

* Availability mechanisms
* How to build into a system?

* Advancing attestation protocols
* “Run-time” attestation
* From attestation to auditing

Other Research in Systems and Software Security

Embedded Systems

* How does the system model change?
* Custom Hardware Extensions in Research

* What type of system-level support is available in today’s devices?
* TrustZone in Cortex-M

* Availability mechanisms
* How to build into a system? - GAROTA

* Advancing attestation protocols
* “Run-time” attestation - C-FLAT

10

System models revisited...

System models revisited...

CPU

Cache

— MMU

Ext. device
(periph., disk, etc)

wCcCw

Rich OS

12

System models revisited...

CPU

Cache

— MMU

TEE-

extension |

w C

Ext. device
(periph., disk, etc)

o

Rich OS

13

System models revisited...

What changes in the microcontroller model?

CPU

Cache

— MMU

Ext. device
(periph., disk, etc)

wCcCw

Rich OS

14

System models revisited...

What changes in the microcontroller model? No MMUs

«— Cache <

Rich OS

CPU

o

w C

Ext. device
(periph., disk, etc)

15

System models revisited...

What changes in the microcontroller model?

CPU

Cache

Ext. device
(periph., disk, etc)

wCcCw

Rich OS

16

System models revisited...

What changes in the microcontroller model? No Inter-process isolation

«—> (Cache |« > <

Rich OS

CPU

o

w C

Ext. device
(periph., disk, etc)

17

System models revisited...

What changes in the microcontroller model? No Inter-process isolation

«—> (Cache |« > <

Rich OS

CPU

o

w C

Ext. device
(periph., disk, etc)

18

System models revisited...

What changes in the microcontroller model? No Inter-process isolation

«—> (Cache |« > <

Rich OS

CPU

o

w C

Ext. device
(periph., disk, etc)

19

System models revisited...

What changes in the microcontroller model? No Inter-process isolation

«—> (Cache |« > <

RTOS

CPU

o

w C

Ext. device
(periph., disk, etc)

20

System models revisited...

What changes in the microcontroller model? No Inter-process isolation

«— (Cache [>

CPU

o

w C

Ext. device
(periph., disk, etc)

21

System models revisited...

What changes in the microcontroller model? No Inter-process isolation

< Cache F g
|
|

CPU '

*Memory
Protection Unit
(MPU)

o

w C

Ext. device
(periph., disk, etc)

22

System models revisited...

What changes in the microcontroller model? No Inter-process isolation

< Cache F g
|
|
CPU .
*Memory

» Protection Unit B

(MPU) U

S

Note: not always, .
Ext. device

and sometimes |+ : . —
quite limited (periph., disk, etc)

23

System models revisited...

What changes in the microcontroller model? Not always having cache

CPU

o

w C

Ext. device
(periph., disk, etc)

24

System models revisited...

Software adversary = all memory could be accessible

CPU

o

n C

Ext. device)
(periph., disk, etc)

25

System models revisited...

Some research takes the form of developing custom hardware extensions or monitors
(or classified as both depending on the abstraction)

t
I

CPU :
Custom
Custom Extensions Monitors B
U
S
Ext. device

(periph., disk, etc) |

26

RISC-V

RISC-V

 RISC :reduced instruction set computing

* V. fifth generation from UC Berkeley
 OpenlISA -2 no licensing fees, full specification access
 Modular designs =2 ISA can be easily extended

e Builtin support for custom extensions =2 (sometimes)

* Minimal cores

27

RISC-V

Examples: PULPino 2 32-bit 4 pipeline MCU model

[0 README 3[3 License Z

«® PULPino

Introduction

PULPino is an open-source single-core microcontroller system, based on 32-bit RISC-V cores developed at ETH
Zurich. PULPino is configurable to use either the RISCY or the zero-riscy core.

RISCY is an in-order, single-issue core with 4 pipeline stages and it has an IPC close to 1, full support for the base
integer instruction set (RV32l), compressed instructions (RV32C) and multiplication instruction set extension (RV32M).
It can be configured to have single-precision floating-point instruction set extension (RV32F). It implements several
ISA extensions such as: hardware loops, post-incrementing load and store instructions, bit-manipulation instructions,
MAC operations, support fixed-point operations, packed-SIMD instructions and the dot product. It has been designed
to increase the energy efficiency of in ultra-low-power signal processing applications. RISCY implementes a subset of
the 1.9 privileged specification. Further informations can be found in
http://ieeexplore.ieee.org/abstract/document/7864441/.

28

RISC-V

Examples: PULPissimo - further support for external hardware engines

[0 README 33 License Vi

PULPissimo

Clock | Reset
Generator

29

RISC-V

Examples: Ibex Core

[0 README &% Apache-2.0 license 38 Security 4

Ibex OpenTitan configuration Nightly Regression

Total Tests 1530 Tests Passing - Functional Coverage 89.8% Code Coverage -

Ibex RISC-V Core

Ibex is a production-quality open source 32-bit RISC-V CPU core written in SystemVerilog. The CPU core is heavily
parametrizable and well suited for embedded control applications. Ibex is being extensively verified and has seen
multiple tape-outs. Ibex supports the Integer () or Embedded (E), Integer Multiplication and Division (M),
Compressed (C), and B (Bit Manipulation) extensions.

Ibex Core

Register File
dabug Tag @

‘Writeback

Instruction Fetch || Decode and Execute

FED N
-

29E312ju] ATOWTA] UOTINSU]
aaegsaju] A1oway BleQ

-

& lowRISC

Ibex was initially developed as part of the PULP platform under the name "Zero-riscy”, and has been contributed to
lowRISC who maintains it and develops it further. It is under active development.

30

Other open cores:

Examples: openMSP430: 16-bit, 2-stage microcontroller

2. Core

2.1 Design structure

The following diagram shows the openMSP430 design structure:

Peripherals

DMA controller,
Bootloader,
Memaory-BIST,

31

Commercial extensions for MCUSs

General purpose hardware controllers

Memory Protection Units

* Provide configuration for “privilege” and “unprivileged” mode
* Also r-w-x permissions on address ranges
 Some limitations on implementations

Company-specific features

* |ntellectual Property Encapsulation (TI MSP430)
* ARM TrustZone-M

32

Commercial extensions for MCUSs

Recall from the previous lecture...

ARM Processors

A few family of CPUs provided by ARM

ARM® Cortex® Processors across the Embedded Market

I £ Nt \ A r -~ 7 -~
Lortex==A processors

Cortex®-R processors

Cortex®-M processors

MCU + DSP

¢

RT DS

Smallest footprint / lowest power Highest performance / real-time [N v; i i st pe '7 :,
L - ‘
Q ?

& @
\::-‘:’-??61“ v

NNNNNNNNNNNN ARM

Later... (Research lecture) Covered Today!

33

ARM Cortex-M Processors

Follow the same simple computer model

CPU

o

n C

Peripherals

34

ARM Cortex-M Processors

Follow the same simple computer model

CPU

o

MPU

n C

Peripherals

35

ARM Cortex-M Processors

Follow the same simple computer model

CPU
MPU B
TrustZone-M
Extension U
S

Peripherals

36

ARM Cortex-M Processors

Follow the same simple computer model

CPU
MPU B
TrustZone-M So how do we get
Extension U any of the same
S guarantees?

Peripherals

37

First, let’s look from the software point of view.
Normal World Secure World

L [|
T

TrustZone-capable CPU

38

First, let’s look from the software point of view.
Normal World Secure World

L [|
T

TrustZone-capable MCU

39

First, no MMU
Normal World Secure World

TrustZone-capable MCU

40

First, no MMU
Normal World Secure World

TrustZone-capable MCU

41

What about safe invocation of the Secure World?

Normal World Secure World

TrustZone-capable MCU

42

TrustZone-M

Non-Secure Callable (NCS) Region

Normal World Secure World

TrustZone-capable MCU

43

Contains “secure gateway” instructions - launch point into SW

Normal World Secure World

TrustZone-capable MCU

44

Contains “secure gateway” instructions - launch point into SW

Normal World Secure Worl ¢ cyne:.

sg
jump SW_funcl

NSC_func2:

sg
jump SW_func2

NSC_funcl:

sg
jump SW_func2

TrustZone-capable MCU

45

TrustZone-M

What about isolation?

Normal World Secure World

TrustZone-capable MCU

46

Hardware Controllers:
* Implementation-Defined Attribution Unit (IDAU) - enforces fixed SW definition
» Secure Attribution Unit (SAU) = extends SW definition, enforces isolation
* Assign an “attribution bit” (i.e., NS bit) to each address. Allow access is addresses match

Normal World Secure World

TrustZone-capable SAU IDAU
MGU Core

47

Secure World boots first!
* Can configure the SAU to setup Secure and Normal Worlds

Boot

Normal World Secure World

TrustZone-capable SAU IDAU
MGU Core

48

Final notes: Other components that are “split”

* Peripherals (I1/0)
* Dedicated interrupt controller (NVIC)
* Memory protection Unit Boot

Normal World Secure World

TrustZone-capable | core NVIC SAU IDAU MPU
MCU

Done TrustZone-M!

Boot

Normal World Secure World

TrustZone-capable | core NVIC SAU IDAU MPU
MCU

Other Research in Systems and Software Security

Embedded Systems

* How does the system model change?
« Custom Hardware Extensions in Research Done!

* What type of system-level support is available in today’s devices?
* TrustZone in Cortex-M Done!

* Availability mechanisms
* How to build into a system? - GAROTA

* Advancing attestation protocols
* “Run-time” attestation - C-FLAT

51

Other Research in Systems and Software Security

Embedded Systems

* How does the system model change?
« Custom Hardware Extensions in Research Done!

* What type of system-level support is available in today’s devices?
* TrustZone in Cortex-M Done!

* Availability mechanisms

Assuming no system support
* How to build into a system? - GAROTA

" (custom hardware ext.)

* Advancing attestation protocols — + TrustZone-M
e “Run-time” attestation - C-FLAT ——

52

Availability in MCUSs

GAROTA - Generalized Active Root of Trust
e Goal:

* Provide a mechanisms to ensure some critical action always executes

* Make it generalizable
* Any general-purpose peripheral on the device can be used
* E.g., GPIO-triggered active root of trust

 Make low-cost for MCUs

* Formally verified

53

Availability in MCUSs

Start with the following address space

I/O
config Program Memory

MCU

54

Availability in MCUSs

Also have GAROTA hardware monitoring MCU signals

I/O
config Program Memory

GAROTA [¢------ MCU

55

Availability in MCUSs

GAROTA Splits Program Memory into two regions:
* Trusted (and protected) code
* Untrusted (and unprotected) code

Program Memory

I/O

. Trusted Untrusted Code
config

GAROTA [¢------ MCU

56

Availability in MCUSs

The trusted code has:
* Boot 2 sequence to initialize the system
« TCB - GAROTA Trusted Computing Base = the action whose availability is protected

Program Memory

"O_ Boot TCB Untrusted Code
config
s‘ ~ - ;_t
GAROTA |«------ MCU
Monitor

57

Availability in MCUSs

TCB is paired with a particular general-purpose IO device
* |t’s configs are also monitored by GAROTA

Program Memory

1/0 Boot TCB Untrusted Code 1/10
51 = — ;_t
GAROTA |[¢------ MCU
Monitor

58

Availability in MCUSs

Execution has the following flow:

Init /Reset
j Program Memory
—_—
1/0 Boot [— TCB Untrusted Code 1/0
IRQ
51 = — ;_t
GAROTA |[«------ MCU
Monitor

59

Availability in MCUSs

GAROTA guarantees: (1) IRQ from TCB-based I/0 will always trigger TCB

Init /Reset
j Program Memory
—_—
1/0 Boot [—— TCB |—-——--- Untrusted Code 1/0

r IRQ

= s_‘ -~ - ,_? —— I

51 = — ;_t
GAROTA |¢------ MCU
Monitor

60

Availability in MCUSs

GAROTA guarantees: (2) TCB will always execute after boot/reset

: Init /Reset :
I Program Memory
N —
I/0 Boot ——, TCB B} Untrusted Code I/O
- IRQ
51 = — ;_t
GAROTA [¢------ MCU
Monitor

61

Availability in MCUSs

GAROTA guarantees: (3) Attempts to disable IRQ will cause HW-reset

Init /Reset
|
l l Program Memory
1/0 Boot |—— TCB I - :— i_ = :l Untrusted Code 1/0
T 1 IRQ I
= - - ;—? ——
51 = — ;_t
GAROTA |¢-----4 MCU
Monitor

62

Availability in MCUSs

GAROTA guarantees: (3) Attempts to disable IRQ will cause HW-reset

Init /Reset
|
l l Program Memory
1/0 Boot |—— TCB I - :— i_ = :l Untrusted Code 1/0
T 1 IRQ I
= - - ;—? ——
51 = — ;_t
GAROTA |¢-----4 MCU
Monitor

63

Availability in MCUSs

GAROTA guarantees: (4) Tampering or interrupting TCB results in HW-reset

Init /Reset
j Program Memory
1/0 Boot |—— TCB | —-~--- L Untrusted Code 1/0
[—X l
o
= ’—.s_l — == =
51 = — ;_t
GAROTA |¢-----4 MCU
Monitor

64

Availability in MCUSs

GAROTA specifications:

Definition 2. Guaranteed Trigger:

G:{trigger —+ F(PC = TCByin)}

Definition 3. Re-Trigger on Failure:

G:{PC € TCB — [(irg A —~dma, AN PC € TCB) W (PC = TCByax \V F(PC = TCBpin) |}

Figure 5: Formal Specification of GAROTA end-to-end goals.

Definition 4. LTL Sub-Properties implemented & enforced by GAROTA.
Trusted PMEM Updates:

G: {[7(PC € TCB) AN\Wen A\ (Dyaar € PMEM)|V [DMA, A (DMAggar € PMEM)] — reset }
IRQ Configuration Protection:
G : {[-(PC € TCB) AWy N (Dyar € IRQ)]V [DMA, N (DMA, 44, € IRQ, g,)] — reset}
Interrupt Disablement Protection:
G : {—reset A gie \—X(gie) — (X(PC) € TCB) v X(reset) }

TCB Execution Protection:

G: {—reset AN(PC € TCB) A —~(X(PC) € TCB) — PC = TCByax Vv X(reset) }
G : {—reset N\—(PC € TCB) A (X(PC) € TCB) — X(PC) = TCB,;;, V¥ X(reset)}

G: {(PC e TCB) A (irg\/ dmae,) — reset}

(6)

(7)

(8)

(9

(10)

(1)

Figure 6: Formal specification of sub-properties verifiably implemented by GAROTA hardware module.

From the GAROTA paper (USENIX Security 2022)

65

https://www.usenix.org/system/files/sec22-aliaj.pdf

Other Research in Systems and Software Security

Embedded Systems
* How does the system model change?
« Custom Hardware Extensions in Research Done!

* What type of system-level support is available in today’s devices?
* TrustZone in Cortex-M Done!

* Availability mechanisms
« How to build into a system? = GAROTA Done!

* Advancing attestation protocols — + TrustZone-M
e “Run-time” attestation - C-FLAT ——

66

Run-time Attestation

Recall this Attestation Protocol

Verifier Prover

4

Adversary May Have Full
Control of Prover’s
Software State

(1) Send chal

(2) An RoT in Prover performs
authenticated measurement:

(3) Send H: H = Auth,(chal, PMEM)

(4) Verify the result: <

Verify, (H, chal, PMEM)

67

Run-time Attestation

Recall this Attestation Protocol

Verifier Prover
(1) Send chal
>
(2) An RoT in Prover
<
)

performs authenticated
measurement:

Send H:

(4) Verify the result: H = Auth,(chal, PMEM)

Verify,(H, chal, PMEM

68

Run-time Attestation

Recall this Attestation Protocol

Buffer
overflow!
Verifier Prover
[.%%)
(1) Send chal
>
(2) An RoT in Prover
performs authenticated
measurement:
(3) Send H:
(4) Verify the result: < H = Auth,(chal, PMEM)

Verify,(H, chal, PMEM)

69

Run-time Attestation

Recall this Attestation Protocol

Buffer
overflow!

Verifier Prover
%)
(1) Send chal
>
(2) An RoT in Prover
performs authenticated
measurement:
(3) Send H.:
(4) Verify the result: « H = Auth,(chal, PMEM)

Verify,(H, chal, PMEM)

Run-time attacks (like control flow hijack) do
not require modifying memory = bypass RA!! 70

Run-time Attesation

Run-time Attestation

* Require Prover to attest to
* The correct system state (e.g., program is installed)
* The system behaved at run-time in a valid way

* First proposed in C-FLAT

e Control Flow Attestation

* C-FLAT: Requires an MCU Prover to attest to:

* |tis executing the correct software
* |t executed it following valid control flow paths

71

Control Flow Attestation

Verifier Prover
R
K 233
& 00—
(1) Send chal
>
(2) Execute while RoT traces
software:
T=read() - parse() -
val<max - OK - ..
(3) Rol performs
authenticated measurement:
(3) Send H: _
(4) Verify the result: < H = Auth(chal, T, PMEM)

Verify, (H, chal, PMEM)

72

Control Flow Attestation

Verifier Prover
R
K 233
& 00—
(1) Send chal
>
(2) Execute while RoT traces
software:
T=read() - parse() -
val<max - OK - ..
(3) Rol performs
authenticated measurement:
(3) Send H: _
(4) Verify the result: < H = Auth(chal, T, PMEM)

Verify, (H, chal, PMEM)

73

C-FLAT Approach

C-FLAT proposes a TrustZone-M based approach:

Normal World Secure World

TrustZone-capable | core NVIC SAU IDAU MPU
MCU

74

C-FLAT Approach

Before installing the program, first static analysis and instrumentation

Normal World Secure World

cmp rl, r2
Jjmp S+4
add r3, #4

Jjmp S+2
mult r5, r3
call ro

TrustZone-capable | core NVIC SAU IDAU MPU
MCU

75

C-FLAT Approach

Every branch instruction is redirected to a NSC

Normal World Secure World

cmp rl, r2
call ncs_Jjmp
add r3, #4

call nsc_Jjmp
mult r5, r3
call ncs_call

TrustZone-capable | core NVIC SAU IDAU MPU
MCU

76

C-FLAT Approach

Once arrived inside the SW, compute running hash H, = hash(addr, H, ,)

Normal World

cmp rl, r2
call ncs_Jjmp
add r3, #4
call nsc_Jjmp
mult r5, r3
call ncs_call

Secure World

TrustZone-capable Core
MCU

NVIC

SAU

IDAU MPU

77

C-FLAT Approach

One note! This requires protecting the normal world app with the MPU

Normal World Secure World

cmp rl, r2
call nes_jmp

add r3, #4

call nsc_Jjmp

mult r5, r3
call ncs_call hashO

TrustZone-capable | core NVIC SAU IDAU MPU
MCU

78

C-FLAT Approach

After execution has ended, attest by producing sig = auth,(chal, H)

Normal World I Secure World

cmp rl, r2
call ncs_Jjmp
add r3, #4

call nsc_Jjmp
mult r5, r3
call ncs_call

TrustZone-capable | core NVIC SAU IDAU MPU
MCU

79

C-FLAT Approach

NOTE: Assumes Prover was installed with a key (MCU assumption)

Normal World I Secure World

cmp rl, r2
call ncs_Jjmp
add r3, #4

call nsc_Jjmp
mult r5, r3
call ncs_call

TrustZone-capable | core NVIC SAU IDAU MPU
MCU

80

More details on C-FLAT in the paper

€ cChallenge c s f
pplcetion [@Response r g | APPIcation
odule \ e odule
I Verifier Ver Prover ®rv I
| Generate Control-Flow o (Execute: |
Graph: G=CFG(A(*)) | Exec(A(input))
v ¥
ra L M Ty
Measure CFG Paths: easure executed
H(G) 9 CFG Path:
L Authi=H(Exec(A(input))),

Generate Authenticated

Measurement DB Attestation Report:

r=5ig{Authc)

Verification of r b

Figure 2: Overview of C-FLAT

From the C-FLAT paper (CCS 2016) 81

https://arxiv.org/abs/1605.07763
https://arxiv.org/abs/1605.07763
https://arxiv.org/abs/1605.07763
https://arxiv.org/abs/1605.07763

Other Research in Systems and Software Security

Embedded Systems
* How does the system model change?
« Custom Hardware Extensions in Research Done!

* What type of system-level support is available in today’s devices?
* TrustZone in Cortex-M Done!

* Availability mechanisms
« How to build into a system? = GAROTA Done!

* Advancing attestation protocols
« “Run-time” attestation - C-FLAT Done!

Concluding remarks...

82

Concluding remarks

Memory
Vulnerability

Integrity
Violation

Exploit
Payload

Exploit
Dispatch

Exploit
Execution

e Attack

83

Concluding remarks

Memory
Vulnerability

Integrity
Violation

Exploit
Payload

Exploit
Dispatch

Exploit
Execution

e Attack

84

Concluding remarks

Memory

Integrity
Violation

Exploit
Payload

Exploit
Dispatch

Exploit
Execution

e Attack

Vulnerability

Out-of-bounds pointer

Dangling Pointer

Format string vuln.

Unintended Read “

:/\:
T

l_l

\ 4

Unintended write

v

\ 4

[7 y_
. _ Modify Modify
Exfiltrate data Modify Code Control Data Non-control Data

v

Interpret
Exfiltrated data

Inject attacker-
controlled code

A 4

Inject attacker-
controlled addr.

Inject attacker-
controlled data

v

A 4

Y

Indirect jump to
corrupted addr.

Return to
corrupted addr.

Use of corrupt
data

modified code

Execute L

Execute injected

]

A 4

A

code fragment

\ 4

Execute code
gadget

Execute data-
oriented gadget

y

85

Concluding remarks

Memory Software Testing: Fuzzing, symbolic exec., sanitizers
Vulnerability Memory safety: Static analysis, safe languages
|

. ! v ¥ 'S
Integrity . _ Modify Modify
Violation Exfiltrate data Modify Code Control Data Non-control Data

Jv \ 4 A 4 \ 4

Exploit Interpret Inject attacker- Inject attacker- Inject attacker-
Payload Exfiltrated data controlled code controlled addr. controlled data

. * \ 4 \ 4
Exploit Indirect jump to Return to Use of corrupt
Dispatch corrupted addr. corrupted addr. data

4><><7
Exploit Execute L Execute injected | | | Execute code Execute data-
Execution modified code code fragment gadget oriented gadget
| | |

(. QR atcion aeain | 86

Concluding remarks

Memory Software Testing: Fuzzing, symbolic exec., sanitizers
Vulnerability Memory safety: Static analysis, safe languages
Integrity Software Compartmentalization: Code Integrity, Pointer
Violation integrity, Memory Management
Exploit Interpret Inject attacker- Inject attacker- Inject attacker-
Payload Exfiltrated data controlled code controlled addr. controlled data
. * A\ 4 \ 4
Exploit Indirect jump to Return to Use of corrupt
Dispatch corrupted addr. corrupted addr. data
4><><7
Exploit Execute L Execute injected | | | Execute code Execute data-
Execution modified code code fragment gadget oriented gadget
| | |

(. QR atcion aeain | :

Concluding remarks

Memory Software Testing: Fuzzing, symbolic exec., sanitizers
Vulnerability Memory safety: Static analysis, safe languages
Integrity Software Compartmentalization: Code Integrity, Pointer
Violation integrity, Memory Management
Exploit . . g .
- Software Diversification: ASLR, ISR, DSR
Payload
|
. * \ 4 \ 4

Exploit Indirect jump to Return to Use of corrupt
Dispatch corrupted addr. corrupted addr. data

\ 4 ::
Exploit Execute L Execute injected | | | Execute code Execute data-
Execution modified code code fragment gadget oriented gadget

[| |

(. QR atcion aeain | :

Concluding remarks

Memory
Vulnerability

Integrity
Violation

Exploit
Payload

Exploit
Dispatch

Exploit
Execution

e Attack

Software Testing: Fuzzing, symbolic exec., sanitizers
Memory safety: Static analysis, safe languages

Software Compartmentalization: Code Integrity, Pointer
integrity, Memory Management

Software Diversification: ASLR, ISR, DSR

Run-time Integrity: Control Flow Integrity,
Data flow integrity

Execute L Execute injected | | | Execute code Execute data-

modified code code fragment gadget oriented gadget

y

89

Concluding remarks

Memory Software Testing: Fuzzing, symbolic exec., sanitizers
Vulnerability Memory safety: Static analysis, safe languages
Integrity Software Compartmentalization: Code Integrity, Pointer
Violation integrity, Memory Management
Expal Software Diversification: ASLR, ISR, DSR
Payload

I [
Exploit Run-time Integrity: Control Flow Integrity,
Dispatch Data flow integrity
Exploit Last line of defense:
Execution W+X, DEP, Static/Run-time Attestation

O [aicion asain | go

Concluding remarks

Memory Software Testing: Fuzzing, symbolic exec., sanitize
Villnerability Memory safety: Static analysis, safe languages| Rootof
Trust
Integrity Software Compartmentalization: Code Integrity, Poi (RoT)
Violation integrity, Memory Management
Secure Boot
Explott Software Diversification: ASLR, ISR, DSR
Payload ’
| | OS’s
Exploit Run-time Integrity: Control Flow Integrity,
Dispatch Data flow integrity TPMs
Exploit Last line of defense: TEEsS
Execution W+X, DEP, Static/Run-time Attestation
I

O [aicion asain | m

Concluding remarks

Memory Software Testing: Fuzzing, symbolic exec., sanitize
Vulnera bmory safety: Static analysis, safe languages| Root of
Trust
Integrity e Compartmentalization: Code Integrity, Poi (RoT)
violatid Modules 3, 4, 5 integrity, Memory Management . noot
ecure Boo
Exploit Software Diversification: ASLR, ISR, DSR
Payload :
| | OS’s
Exploit Run-time Integrity: Control Flow Integrity,
Dispatch Data flow integrity TPMs
Exploit Last line of defense: TEEs
Execution W+X, DEP, Static/Run-time Attestation
[

92

O [aicion asain |

Concluding remarks

M | 7
Memory Software Testing: Fuzzing, symbolic exec., san odules,7,8
Vulnera smory safety: Static analysis, safe langual--
Trust
Integrity e Compartmentalization: Code Integrity, Poi (RoT)
violatid Modules 3, 4, 5 integrity, Memory Management . noot
ecure Boo

Exploit Software Diversification: ASLR, ISR, DSR
Payload 0S’s

I |
Exploit Run-time Integrity: Control Flow Integrity,
Dispatch Data flow integrity TPMs
Exploit Last line of defense: TEEs
Execution W+X, DEP, Static/Run-time Attestation

93

O [aicion asain |

Concluding remarks

M | 7
Memory Software Testing: Fuzzing, symbolic exec., san 2L BUESs 2t
Vulnersg smory safety: Static analysis, safe langual--
Trust
Integrity e Compartmentalization: Code Integrity, Poi (RoT)
violatid Modules 3, 4, 5 integrity, Memory Management . noot
ecure Boo

Exploit Software Diversification: ASLR, ISR, DSR
Payload ’

| | OS’s
Exploit Run-time Integrity: Control Flow Integrity,
Dispatch Data flow integrity TPMs

: Last line of defense:

Exploit TEEs
executii Modules 8,7,8 | \y.+x DEP, Static/Run-time Attestation

[Y aicion asain | :

Concluding remarks

M l 7
Memory Software Testing: Fuzzing, symbolic exec., san 2L BUESs 2t
Vulnera smory safety: Static analysis, safe langual, -
Trust
e Integrity e Compartmentalization: Code Integrity, Poi (RoT)
Violatid Modules 3,4,5 integrity, Memory Management
Secure Boot
Exploit Software Diversification: ASLR, ISR, DSR
Payload 0S’s
I [
° Exploit Run-time Integrity: Control Flow Integrity,
Dispatch Data flow integrity TPMs
Exploit Last line of defense: :
xecutii Modules 6,7,8 | \.x DEP, Static/Run-time Attes Bonus:

e Attack

Ethics (Module 9)

_ Research (Module 10)

Concluding thoughts...

What is Software and System Security?

Mechanisms combining software AND roots of trust to:
* Detect memory vulnerabilities via software testing and memory safety

* Prevent integrity violations via compartmentalization, access control,
memory management

* Prevent exploiting vulnerabilities with software diversification
* Prevent dispatching of payloads via run-time defenses

e Prove/ensure execution itself is valid

96

Concluding thoughts...

What is Software and System Security?

Mechanisms combining software AND roots of trust to:
* Detect memory vulnerabilities via software testing and memory safety

* Prevent integrity violations via compartmentalization, access control,
memory management

* Prevent exploiting vulnerabilities with software diversification
* Prevent dispatching of payloads via run-time defenses

e Prove/ensure execution itself is valid

Thank you for a great term! Wish you all the best!

97

That’s all for today!

Resources:
* SONY Press Centre (UK)

e PULPInoO
e PULPIissimo

* Ibex

* 0penMSP430

* MSP430 IPE

* TrustZone-M Basics
* GARQOTA

* C-FLAT

98

https://www.sony.co.uk/presscentre/sony-launches-camera-verify-feature-for-its-camera-authenticity-solution-for-news-organisations
https://www.sony.co.uk/presscentre/sony-launches-camera-verify-feature-for-its-camera-authenticity-solution-for-news-organisations
https://www.sony.co.uk/presscentre/sony-launches-camera-verify-feature-for-its-camera-authenticity-solution-for-news-organisations
https://www.sony.co.uk/presscentre/sony-launches-camera-verify-feature-for-its-camera-authenticity-solution-for-news-organisations
https://github.com/pulp-platform/pulpino/
https://github.com/pulp-platform/pulpino/
https://github.com/pulp-platform/pulpino/
https://github.com/pulp-platform/pulpissimo
https://github.com/pulp-platform/pulpissimo
https://github.com/lowRISC/ibex
https://github.com/lowRISC/ibex
https://opencores.org/projects/openmsp430
https://opencores.org/projects/openmsp430
https://www.ti.com/lit/an/slaa685/slaa685.pdf?ts=1753684852311&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/an/slaa685/slaa685.pdf?ts=1753684852311&ref_url=https%253A%252F%252Fwww.google.com%252F
https://embeddedsecurity.io/sec-tz-basics
https://embeddedsecurity.io/sec-tz-basics
https://embeddedsecurity.io/sec-tz-basics
https://embeddedsecurity.io/sec-tz-basics
https://www.usenix.org/system/files/sec22-aliaj.pdf
https://www.usenix.org/system/files/sec22-aliaj.pdf
https://www.usenix.org/system/files/sec22-aliaj.pdf
https://arxiv.org/abs/1605.07763
https://arxiv.org/abs/1605.07763
https://arxiv.org/abs/1605.07763
https://arxiv.org/abs/1605.07763

99

	Slide 1: Module: Research Lecture
	Slide 2: Reminders & Recap
	Slide 3: Reminders & Recap
	Slide 4: Reminders & Recap
	Slide 5: Follow up from last time…
	Slide 6: Follow up from last time…
	Slide 7: Follow up from last time…
	Slide 8: Follow up from last time…
	Slide 9: Outline
	Slide 10: Outline
	Slide 11: System models revisited…
	Slide 12: System models revisited…
	Slide 13: System models revisited…
	Slide 14: System models revisited…
	Slide 15: System models revisited…
	Slide 16: System models revisited…
	Slide 17: System models revisited…
	Slide 18: System models revisited…
	Slide 19: System models revisited…
	Slide 20: System models revisited…
	Slide 21: System models revisited…
	Slide 22: System models revisited…
	Slide 23: System models revisited…
	Slide 24: System models revisited…
	Slide 25: System models revisited…
	Slide 26: System models revisited…
	Slide 27: RISC-V
	Slide 28: RISC-V
	Slide 29: RISC-V
	Slide 30: RISC-V
	Slide 31: Other open cores:
	Slide 32: Commercial extensions for MCUs
	Slide 33: Commercial extensions for MCUs
	Slide 34: ARM Cortex-M Processors
	Slide 35: ARM Cortex-M Processors
	Slide 36: ARM Cortex-M Processors
	Slide 37: ARM Cortex-M Processors
	Slide 38: TrustZone-M
	Slide 39: TrustZone-M
	Slide 40: TrustZone-M
	Slide 41: TrustZone-M
	Slide 42: TrustZone-M
	Slide 43: TrustZone-M
	Slide 44: TrustZone-M
	Slide 45: TrustZone-M
	Slide 46: TrustZone-M
	Slide 47: TrustZone-M
	Slide 48: TrustZone-M
	Slide 49: TrustZone-M
	Slide 50: TrustZone-M
	Slide 51: Outline
	Slide 52: Outline
	Slide 53: Availability in MCUs
	Slide 54: Availability in MCUs
	Slide 55: Availability in MCUs
	Slide 56: Availability in MCUs
	Slide 57: Availability in MCUs
	Slide 58: Availability in MCUs
	Slide 59: Availability in MCUs
	Slide 60: Availability in MCUs
	Slide 61: Availability in MCUs
	Slide 62: Availability in MCUs
	Slide 63: Availability in MCUs
	Slide 64: Availability in MCUs
	Slide 65: Availability in MCUs
	Slide 66: Outline
	Slide 67: Run-time Attestation
	Slide 68: Run-time Attestation
	Slide 69: Run-time Attestation
	Slide 70: Run-time Attestation
	Slide 71: Run-time Attesation
	Slide 72: Control Flow Attestation
	Slide 73: Control Flow Attestation
	Slide 74: C-FLAT Approach
	Slide 75: C-FLAT Approach
	Slide 76: C-FLAT Approach
	Slide 77: C-FLAT Approach
	Slide 78: C-FLAT Approach
	Slide 79: C-FLAT Approach
	Slide 80: C-FLAT Approach
	Slide 81: C-FLAT
	Slide 82: Outline
	Slide 83: Concluding remarks
	Slide 84: Concluding remarks
	Slide 85: Concluding remarks
	Slide 86: Concluding remarks
	Slide 87: Concluding remarks
	Slide 88: Concluding remarks
	Slide 89: Concluding remarks
	Slide 90: Concluding remarks
	Slide 91: Concluding remarks
	Slide 92: Concluding remarks
	Slide 93: Concluding remarks
	Slide 94: Concluding remarks
	Slide 95: Concluding remarks
	Slide 96: Concluding thoughts…
	Slide 97: Concluding thoughts…
	Slide 98: That’s all for today!
	Slide 99

