
Module: Research Lecture
Lecture: Research in Software and Systems Security

Adam Caulfield
University of Waterloo

Spring 2025

CS 453/698: Software and Systems Security

1

Reminders & Recap
Reminders:
• Mini Research Project is due tomorrow!

• Course Evaluations → “Student Course Perceptions”

2

https://watssec.github.io/cs453-s25/assignments/research/
https://watssec.github.io/cs453-s25/assignments/research/

Reminders & Recap
Student Course Perceptions status: make your voices heard!

Note: There are two for this course (one per half), so make sure to do both! 3

Reminders & Recap
Reminders:
• Mini Research Project is due tomorrow!

• Course Evaluations → “Student Course Perceptions”

Recap – last time we covered:

Ethics, legal issues, laws, compliance

4

https://watssec.github.io/cs453-s25/assignments/research/
https://watssec.github.io/cs453-s25/assignments/research/

Follow up from last time…
SONY Press release from over the weekend

SONY Press Centre (UK)

5

https://www.sony.co.uk/presscentre/sony-launches-camera-verify-feature-for-its-camera-authenticity-solution-for-news-organisations
https://www.sony.co.uk/presscentre/sony-launches-camera-verify-feature-for-its-camera-authenticity-solution-for-news-organisations
https://www.sony.co.uk/presscentre/sony-launches-camera-verify-feature-for-its-camera-authenticity-solution-for-news-organisations

Follow up from last time…
SONY Press release from over the weekend

SONY Press Centre (UK) 6

https://www.sony.co.uk/presscentre/sony-launches-camera-verify-feature-for-its-camera-authenticity-solution-for-news-organisations
https://www.sony.co.uk/presscentre/sony-launches-camera-verify-feature-for-its-camera-authenticity-solution-for-news-organisations
https://www.sony.co.uk/presscentre/sony-launches-camera-verify-feature-for-its-camera-authenticity-solution-for-news-organisations

Follow up from last time…
SONY Press release from over the weekend

SONY Press Centre (UK) 7

https://www.sony.co.uk/presscentre/sony-launches-camera-verify-feature-for-its-camera-authenticity-solution-for-news-organisations
https://www.sony.co.uk/presscentre/sony-launches-camera-verify-feature-for-its-camera-authenticity-solution-for-news-organisations
https://www.sony.co.uk/presscentre/sony-launches-camera-verify-feature-for-its-camera-authenticity-solution-for-news-organisations

Follow up from last time…
SONY Press release from over the weekend

SONY Press Centre (UK) 8

https://www.sony.co.uk/presscentre/sony-launches-camera-verify-feature-for-its-camera-authenticity-solution-for-news-organisations
https://www.sony.co.uk/presscentre/sony-launches-camera-verify-feature-for-its-camera-authenticity-solution-for-news-organisations
https://www.sony.co.uk/presscentre/sony-launches-camera-verify-feature-for-its-camera-authenticity-solution-for-news-organisations

Outline

Other Research in Systems and Software Security
Embedded Systems

• How does the system model change?
• Custom Hardware Extensions in Research

• What type of system-level support is available in today’s devices?
• TrustZone in Cortex-M

• Availability mechanisms
• How to build into a system? → GAROTA

• Advancing attestation protocols
• “Run-time” attestation → C-FLAT
• From attestation to auditing → ACFA

9

Outline

Other Research in Systems and Software Security
Embedded Systems

• How does the system model change?
• Custom Hardware Extensions in Research

• What type of system-level support is available in today’s devices?
• TrustZone in Cortex-M

• Availability mechanisms
• How to build into a system? → GAROTA

• Advancing attestation protocols
• “Run-time” attestation → C-FLAT

10

System models revisited…

11

Rich OS (e.g., Linux)

Process 2

CPU

Process 1

System models revisited…

12

Process 2

CPU

Process 1

B
U
S

MMU
Rich OS

Cache

Ext. device
(periph., disk, etc)

System models revisited…

13

Process 2

CPU

Process 1

B
U
S

MMU
Rich OS

Cache

TEE-
extension

Ext. device
(periph., disk, etc)

System models revisited…

14

Process 2

CPU

Process 1

B
U
S

MMU
Rich OS

Cache

Ext. device
(periph., disk, etc)

What changes in the microcontroller model?

System models revisited…

15

Process 2

CPU

Process 1

B
U
S

MMU
Rich OS

Cache

Ext. device
(periph., disk, etc)

What changes in the microcontroller model? No MMUs

System models revisited…

16

Process 2

CPU

Process 1

B
U
S

Rich OS
Cache

Ext. device
(periph., disk, etc)

What changes in the microcontroller model?

System models revisited…

17

Process 2

CPU

Process 1

B
U
S

Rich OS
Cache

Ext. device
(periph., disk, etc)

What changes in the microcontroller model? No Inter-process isolation

System models revisited…

18

Process 2

CPU

Process 1

B
U
S

Rich OS
Cache

Ext. device
(periph., disk, etc)

What changes in the microcontroller model? No Inter-process isolation

System models revisited…

19

“Bare Metal”
software

CPU

B
U
S

Cache

Ext. device
(periph., disk, etc)

What changes in the microcontroller model? No Inter-process isolation

Rich OS

System models revisited…

20

“Bare Metal”
software

CPU

B
U
S

Cache

Ext. device
(periph., disk, etc)

What changes in the microcontroller model? No Inter-process isolation

RTOS

System models revisited…

21

“Bare Metal”
software

CPU

B
U
S

Cache

Ext. device
(periph., disk, etc)

What changes in the microcontroller model? No Inter-process isolation

System models revisited…

22

“Bare Metal”
software

CPU

B
U
S

Cache

Ext. device
(periph., disk, etc)

What changes in the microcontroller model? No Inter-process isolation

*Memory
Protection Unit

(MPU)

System models revisited…

23

“Bare Metal”
software

CPU

B
U
S

Cache

Ext. device
(periph., disk, etc)

What changes in the microcontroller model? No Inter-process isolation

*Memory
Protection Unit

(MPU)

Note: not always,
and sometimes

quite limited

System models revisited…

24

“Bare Metal”
software

CPU

B
U
S

Cache

Ext. device
(periph., disk, etc)

What changes in the microcontroller model? Not always having cache

System models revisited…

25

“Bare Metal”
software

CPU

B
U
S

Ext. device
(periph., disk, etc)

Software adversary → all memory could be accessible

Data Memory

System models revisited…

26

“Bare Metal”
software

CPU

B
U
S

Ext. device
(periph., disk, etc)

Some research takes the form of developing custom hardware extensions or monitors
(or classified as both depending on the abstraction)

Data Memory

Custom
MonitorsCustom Extensions

RISC-V

27

RISC-V
• RISC : reduced instruction set computing
• V : fifth generation from UC Berkeley

• Open ISA → no licensing fees, full specification access

• Modular designs → ISA can be easily extended

• Built in support for custom extensions → (sometimes)

• Minimal cores

RISC-V

28

Examples: PULPino → 32-bit 4 pipeline MCU model

RISC-V

29

Examples: PULPissimo → further support for external hardware engines

RISC-V

30

Examples: Ibex Core

Other open cores:

31

Examples: openMSP430: 16-bit, 2-stage microcontroller

Commercial extensions for MCUs

32

General purpose hardware controllers

Memory Protection Units
• Provide configuration for “privilege” and “unprivileged” mode
• Also r-w-x permissions on address ranges
• Some limitations on implementations

Company-specific features
• Intellectual Property Encapsulation (TI MSP430)
• ARM TrustZone-M

Commercial extensions for MCUs

33

Recall from the previous lecture…

ARM Cortex-M Processors

34

Follow the same simple computer model

“Bare Metal”
software

CPU

B
U
S

Peripherals
Data Memory

ARM Cortex-M Processors

35

Follow the same simple computer model

“Bare Metal”
software

CPU

B
U
S

Peripherals
Data Memory

MPU

ARM Cortex-M Processors

36

Follow the same simple computer model

“Bare Metal”
software

CPU

B
U
S

Peripherals
Data Memory

MPU
TrustZone-M

Extension

ARM Cortex-M Processors

37

Follow the same simple computer model

“Bare Metal”
software

CPU

B
U
S

Peripherals
Data Memory

MPU
TrustZone-M

Extension

So how do we get
any of the same

guarantees?

TrustZone-M

38

First, let’s look from the software point of view.

Process 1

Rich OS (e.g., Linux)

Process 2

TrustZone-capable CPU

Trusted App 1

Small Trusted OS

Trusted App 2

Normal World Secure World

Sec.
Monitor

TrustZone-M

39

First, let’s look from the software point of view.

Process 1

Rich OS (e.g., Linux)

Process 2

TrustZone-capable MCU

Trusted App 1

Small Trusted OS

Trusted App 2

Normal World Secure World

Sec.
Monitor

TrustZone-M

40

First, no MMU

Process 1

Rich OS (e.g., Linux)

Process 2

TrustZone-capable MCU

Trusted App 1

Small Trusted OS

Trusted App 2

Normal World Secure World

Sec.
Monitor ?

TrustZone-M

41

First, no MMU

Process 1 Process 2

TrustZone-capable MCU

Trusted App 1 Trusted App 2

Normal World Secure World

Sec.
Monitor ?

What about safe invocation of the Secure World?

Program Memory

TrustZone-M

42

Data Memory

TrustZone-capable MCU

Normal World Secure World

Data Memory

Sec.
Monitor ?

Program Memory

TrustZone-M

43

Non-Secure Callable (NCS) Region

Data Memory

Program Memory

TrustZone-capable MCU

Normal World Secure World

Data Memory

NSC Program Memory

TrustZone-M

44

Contains “secure gateway” instructions → launch point into SW

Data Memory

Program Memory

TrustZone-capable MCU

Normal World Secure World

Data Memory

Program Memory
SG

SG

NSC

SG

TrustZone-M

45

Contains “secure gateway” instructions → launch point into SW

Data Memory

Program Memory

TrustZone-capable MCU

Normal World Secure World

Data Memory

Program Memory
SG

SG

NSC

SG

NSC_func1:

 sg

 jump SW_func1

NSC_func2:

 sg

 jump SW_func2

NSC_func1:

 sg

 jump SW_func2

.

.

.

TrustZone-M

46

What about isolation?

Data Memory

Program Memory

TrustZone-capable MCU

Normal World Secure World

Data Memory

NSC Program Memory

TrustZone-M

47

Hardware Controllers:
• Implementation-Defined Attribution Unit (IDAU) → enforces fixed SW definition
• Secure Attribution Unit (SAU) → extends SW definition, enforces isolation
• Assign an “attribution bit” (i.e., NS bit) to each address. Allow access is addresses match

Data Memory

Program Memory

Normal World Secure World

Data Memory

NSC Program Memory

Core SAU IDAUTrustZone-capable
MCU

TrustZone-M

48

Secure World boots first!
• Can configure the SAU to setup Secure and Normal Worlds

Data Memory

Program Memory

Normal World Secure World

Data Memory

NSC Program Memory

Core SAU IDAUTrustZone-capable
MCU

Boot

TrustZone-M

49

Final notes: Other components that are “split”
• Peripherals (I/O)

• Dedicated interrupt controller (NVIC)

• Memory protection Unit

Data Memory

Program Memory

Normal World Secure World

Data Memory

NSC Program Memory

Core SAU IDAUTrustZone-capable
MCU

NVIC

I/O I/O

MPU

Boot

TrustZone-M

50

Done TrustZone-M!

Data Memory

Program Memory

Normal World Secure World

Data Memory

NSC Program Memory

Core SAU IDAUTrustZone-capable
MCU

NVIC

I/O I/O

MPU

Boot

Outline

Other Research in Systems and Software Security
Embedded Systems

• How does the system model change?
• Custom Hardware Extensions in Research

• What type of system-level support is available in today’s devices?
• TrustZone in Cortex-M

• Availability mechanisms
• How to build into a system? → GAROTA

• Advancing attestation protocols
• “Run-time” attestation → C-FLAT

51

Done!

Done!

Outline

Other Research in Systems and Software Security
Embedded Systems

• How does the system model change?
• Custom Hardware Extensions in Research

• What type of system-level support is available in today’s devices?
• TrustZone in Cortex-M

• Availability mechanisms
• How to build into a system? → GAROTA

• Advancing attestation protocols
• “Run-time” attestation → C-FLAT

52

Done!

Done!

Assuming no system support
(custom hardware ext.)

TrustZone-M

Availability in MCUs

GAROTA → Generalized Active Root of Trust
• Goal:

• Provide a mechanisms to ensure some critical action always executes

• Make it generalizable
• Any general-purpose peripheral on the device can be used
• E.g., GPIO-triggered active root of trust

• Make low-cost for MCUs

• Formally verified

53

Availability in MCUs

Start with the following address space

54

MCU

Program Memory
I/O

config

Availability in MCUs

Also have GAROTA hardware monitoring MCU signals

55

Program Memory

MCUGAROTA
Monitor

I/O
config

Availability in MCUs

GAROTA Splits Program Memory into two regions:
• Trusted (and protected) code
• Untrusted (and unprotected) code

56

MCUGAROTA
Monitor

Program Memory

I/O
config

Untrusted CodeTrusted

Availability in MCUs

The trusted code has:
• Boot → sequence to initialize the system
• TCB → GAROTA Trusted Computing Base → the action whose availability is protected

57

MCUGAROTA
Monitor

Program Memory

I/O
config

Untrusted CodeBoot TCB

Availability in MCUs

TCB is paired with a particular general-purpose IO device
• It’s configs are also monitored by GAROTA

58

MCU

Program Memory

I/O Untrusted CodeBoot TCB I/O

GAROTA
Monitor

Availability in MCUs

Execution has the following flow:

59

MCU

Program Memory

I/O Untrusted CodeBoot TCB I/O

GAROTA
Monitor

Init /Reset

IRQ

Availability in MCUs

GAROTA guarantees: (1) IRQ from TCB-based I/O will always trigger TCB

60

MCU

Program Memory

I/O Untrusted CodeBoot TCB I/O

GAROTA
Monitor

Init /Reset

IRQ

GAROTA guarantees: (2) TCB will always execute after boot/reset

Availability in MCUs

61

MCU

Program Memory

I/O Untrusted CodeBoot TCB I/O

GAROTA
Monitor

Init /Reset

IRQ

GAROTA guarantees: (3) Attempts to disable IRQ will cause HW-reset

Availability in MCUs

62

MCU

Program Memory

I/O Untrusted CodeBoot TCB I/O

GAROTA
Monitor

Init /Reset

IRQIRQ

GAROTA guarantees: (3) Attempts to disable IRQ will cause HW-reset

Availability in MCUs

63

MCU

Program Memory

I/O Untrusted CodeBoot TCB I/O

GAROTA
Monitor

Init /Reset

IRQIRQ

GAROTA guarantees: (4) Tampering or interrupting TCB results in HW-reset

Availability in MCUs

64

MCU

Program Memory

I/O Untrusted CodeBoot TCB I/O

GAROTA
Monitor

Init /Reset

IRQ

GAROTA specifications:

Availability in MCUs

65From the GAROTA paper (USENIX Security 2022)

https://www.usenix.org/system/files/sec22-aliaj.pdf

Outline

Other Research in Systems and Software Security
Embedded Systems

• How does the system model change?
• Custom Hardware Extensions in Research

• What type of system-level support is available in today’s devices?
• TrustZone in Cortex-M

• Availability mechanisms
• How to build into a system? → GAROTA

• Advancing attestation protocols
• “Run-time” attestation → C-FLAT

66

Done!

Done!

Done!

TrustZone-M

Run-time Attestation
Recall this Attestation Protocol

67

(4) Verify the result:

Verifyk(H, chal, PMEM)

Verifier

(2) An RoT in Prover performs
authenticated measurement:

H = Authk(chal, PMEM)

Prover

Adversary May Have Full
Control of Prover’s
Software State

(3) Send H:

(1) Send chal

Run-time Attestation
Recall this Attestation Protocol

68

(4) Verify the result:

Verifyk(H, chal, PMEM)

Verifier

(2) An RoT in Prover
performs authenticated
measurement:

H = Authk(chal, PMEM)

Prover

(3) Send H:

(1) Send chal

Run-time Attestation
Recall this Attestation Protocol

69

(4) Verify the result:

Verifyk(H, chal, PMEM)

Verifier

(2) An RoT in Prover
performs authenticated
measurement:

H = Authk(chal, PMEM)

Prover

(3) Send H:

(1) Send chal

Run-time Attestation
Recall this Attestation Protocol

70

(4) Verify the result:

Verifyk(H, chal, PMEM)

Verifier

(2) An RoT in Prover
performs authenticated
measurement:

H = Authk(chal, PMEM)

Prover

(3) Send H:

(1) Send chal

Run-time attacks (like control flow hijack) do
not require modifying memory → bypass RA!!

Run-time Attesation

Run-time Attestation
• Require Prover to attest to

• The correct system state (e.g., program is installed)
• The system behaved at run-time in a valid way

• First proposed in C-FLAT
• Control Flow Attestation

• C-FLAT: Requires an MCU Prover to attest to:
• It is executing the correct software
• It executed it following valid control flow paths

71

Control Flow Attestation

72

(4) Verify the result:

Verifyk(H, chal, PMEM)

Verifier

(2) Execute while RoT traces
software:

T = read() → parse() →
val<max → OK → …

(3) RoT performs
authenticated measurement:

H = Authk(chal, T, PMEM)

Prover

(3) Send H:

(1) Send chal

Control Flow Attestation

73

(4) Verify the result:

Verifyk(H, chal, PMEM)

Verifier

(2) Execute while RoT traces
software:

T = read() → parse() →
val<max → OK → …

(3) RoT performs
authenticated measurement:

H = Authk(chal, T, PMEM)

Prover

(3) Send H:

(1) Send chal

C-FLAT Approach

74

C-FLAT proposes a TrustZone-M based approach:

Attested
Program

Normal World Secure World

Data Memory

NSC Program Memory

Core SAU IDAUTrustZone-capable
MCU

NVIC MPU

C-FLAT Approach

75

Before installing the program, first static analysis and instrumentation

Attested
Program

Normal World Secure World

Data Memory

NSC Program Memory

Core SAU IDAUTrustZone-capable
MCU

NVIC MPU

cmp r1, r2

jmp $+4

add r3, #4

jmp $+2

mult r5, r3

call r6

C-FLAT Approach

76

Every branch instruction is redirected to a NSC

Attested
Program

Normal World Secure World

Data Memory

NSC Program Memory

Core SAU IDAUTrustZone-capable
MCU

NVIC MPU

cmp r1, r2

call ncs_jmp

add r3, #4

call nsc_jmp

mult r5, r3

call ncs_call

C-FLAT Approach

77

Once arrived inside the SW, compute running hash Hi = hash(addr, Hi-1)

Attested
Program

Normal World Secure World

NSC

Program Memory

Core SAU IDAUTrustZone-capable
MCU

NVIC MPU

cmp r1, r2

call ncs_jmp

add r3, #4

call nsc_jmp

mult r5, r3

call ncs_call hash()

Data Memory

H

addr

C-FLAT Approach

78

One note! This requires protecting the normal world app with the MPU

Attested
Program

Normal World Secure World

NSC

Program Memory

Core SAU IDAUTrustZone-capable
MCU

NVIC MPU

cmp r1, r2

call ncs_jmp

add r3, #4

call nsc_jmp

mult r5, r3

call ncs_call hash()

Data Memory

H

addr

C-FLAT Approach

79

After execution has ended, attest by producing sig = authk(chal, H)

Attested
Program

Normal World Secure World

NSC

Core SAU IDAUTrustZone-capable
MCU

NVIC MPU

cmp r1, r2

call ncs_jmp

add r3, #4

call nsc_jmp

mult r5, r3

call ncs_call hash()

H

auth()

sigkey

chal

C-FLAT Approach

80

NOTE: Assumes Prover was installed with a key (MCU assumption)

Attested
Program

Normal World Secure World

NSC

Core SAU IDAUTrustZone-capable
MCU

NVIC MPU

cmp r1, r2

call ncs_jmp

add r3, #4

call nsc_jmp

mult r5, r3

call ncs_call hash()

H

auth()

sigkey

chal

More details on C-FLAT in the paper

C-FLAT

81From the C-FLAT paper (CCS 2016)

https://arxiv.org/abs/1605.07763
https://arxiv.org/abs/1605.07763
https://arxiv.org/abs/1605.07763
https://arxiv.org/abs/1605.07763

Outline

Other Research in Systems and Software Security
Embedded Systems

• How does the system model change?
• Custom Hardware Extensions in Research

• What type of system-level support is available in today’s devices?
• TrustZone in Cortex-M

• Availability mechanisms
• How to build into a system? → GAROTA

• Advancing attestation protocols
• “Run-time” attestation → C-FLAT

Concluding remarks…
82

Done!

Done!

Done!

Done!

Concluding remarks

83

1

2

3

4

5

Memory
Vulnerability

Integrity
Violation

Exploit
Payload

Exploit
Dispatch

Exploit
Execution

6 Attack

Concluding remarks

84

2

3

4

5

Integrity
Violation

Exploit
Payload

Exploit
Dispatch

Exploit
Execution

6 Attack Information leak Malicious execution

1 Memory
Vulnerability

Concluding remarks

85

1

2

3

4

5

Memory
Vulnerability

Integrity
Violation

Exploit
Payload

Exploit
Dispatch

Exploit
Execution

6 Attack

Out-of-bounds pointer Dangling Pointer Format string vuln.

Unintended Read Unintended write

Information leak Malicious execution

Exfiltrate data Modify Code
Modify

Control Data
Modify

Non-control Data

Interpret
Exfiltrated data

Inject attacker-
controlled code

Inject attacker-
controlled addr.

Inject attacker-
controlled data

Execute
modified code

Execute injected
code fragment

Indirect jump to
corrupted addr.

Return to
corrupted addr.

Execute code
gadget

Execute data-
oriented gadget

Use of corrupt
data

Concluding remarks

86

1

2

3

4

5

Memory
Vulnerability

Integrity
Violation

Exploit
Payload

Exploit
Dispatch

Exploit
Execution

6 Attack

Out-of-bounds pointer Dangling Pointer Format string vuln.

Unintended Read Unintended write

Information leak Malicious execution

Exfiltrate data Modify Code
Modify

Control Data
Modify

Non-control Data

Interpret
Exfiltrated data

Inject attacker-
controlled code

Inject attacker-
controlled addr.

Inject attacker-
controlled data

Execute
modified code

Execute injected
code fragment

Indirect jump to
corrupted addr.

Return to
corrupted addr.

Execute code
gadget

Execute data-
oriented gadget

Use of corrupt
data

Software Testing: Fuzzing, symbolic exec., sanitizers
Memory safety: Static analysis, safe languages

Concluding remarks

87

1

2

3

4

5

Memory
Vulnerability

Integrity
Violation

Exploit
Payload

Exploit
Dispatch

Exploit
Execution

6 Attack

Out-of-bounds pointer Dangling Pointer Format string vuln.

Unintended Read Unintended write

Information leak Malicious execution

Exfiltrate data Modify Code
Modify

Control Data
Modify

Non-control Data

Interpret
Exfiltrated data

Inject attacker-
controlled code

Inject attacker-
controlled addr.

Inject attacker-
controlled data

Execute
modified code

Execute injected
code fragment

Indirect jump to
corrupted addr.

Return to
corrupted addr.

Execute code
gadget

Execute data-
oriented gadget

Use of corrupt
data

Software Testing: Fuzzing, symbolic exec., sanitizers
Memory safety: Static analysis, safe languages

Software Compartmentalization: Code Integrity, Pointer
integrity, Memory Management

Concluding remarks

88

1

2

3

4

5

Memory
Vulnerability

Integrity
Violation

Exploit
Payload

Exploit
Dispatch

Exploit
Execution

6 Attack

Out-of-bounds pointer Dangling Pointer Format string vuln.

Unintended Read Unintended write

Information leak Malicious execution

Exfiltrate data Modify Code
Modify

Control Data
Modify

Non-control Data

Interpret
Exfiltrated data

Inject attacker-
controlled code

Inject attacker-
controlled addr.

Inject attacker-
controlled data

Execute
modified code

Execute injected
code fragment

Indirect jump to
corrupted addr.

Return to
corrupted addr.

Execute code
gadget

Execute data-
oriented gadget

Use of corrupt
data

Software Compartmentalization: Code Integrity, Pointer
integrity, Memory Management

Software Testing: Fuzzing, symbolic exec., sanitizers
Memory safety: Static analysis, safe languages

Software Diversification: ASLR, ISR, DSR

Concluding remarks

89

1

2

3

4

5

Memory
Vulnerability

Integrity
Violation

Exploit
Payload

Exploit
Dispatch

Exploit
Execution

6 Attack

Out-of-bounds pointer Dangling Pointer Format string vuln.

Unintended Read Unintended write

Information leak Malicious execution

Exfiltrate data Modify Code
Modify

Control Data
Modify

Non-control Data

Interpret
Exfiltrated data

Inject attacker-
controlled code

Inject attacker-
controlled addr.

Inject attacker-
controlled data

Execute
modified code

Execute injected
code fragment

Indirect jump to
corrupted addr.

Return to
corrupted addr.

Execute code
gadget

Execute data-
oriented gadget

Use of corrupt
data

Software Compartmentalization: Code Integrity, Pointer
integrity, Memory Management

Software Testing: Fuzzing, symbolic exec., sanitizers
Memory safety: Static analysis, safe languages

Software Diversification: ASLR, ISR, DSR

Run-time Integrity: Control Flow Integrity,
Data flow integrity

Concluding remarks

90

1

2

3

4

5

Memory
Vulnerability

Integrity
Violation

Exploit
Payload

Exploit
Dispatch

Exploit
Execution

6 Attack

Out-of-bounds pointer Dangling Pointer Format string vuln.

Unintended Read Unintended write

Information leak Malicious execution

Exfiltrate data Modify Code
Modify

Control Data
Modify

Non-control Data

Interpret
Exfiltrated data

Inject attacker-
controlled code

Inject attacker-
controlled addr.

Inject attacker-
controlled data

Execute
modified code

Execute injected
code fragment

Indirect jump to
corrupted addr.

Return to
corrupted addr.

Execute code
gadget

Execute data-
oriented gadget

Use of corrupt
data

Software Compartmentalization: Code Integrity, Pointer
integrity, Memory Management

Software Testing: Fuzzing, symbolic exec., sanitizers
Memory safety: Static analysis, safe languages

Software Diversification: ASLR, ISR, DSR

Last line of defense:
W+X, DEP, Static/Run-time Attestation

Run-time Integrity: Control Flow Integrity,
Data flow integrity

Concluding remarks

91

1

2

3

4

5

Memory
Vulnerability

Integrity
Violation

Exploit
Payload

Exploit
Dispatch

Exploit
Execution

6 Attack

Out-of-bounds pointer Dangling Pointer Format string vuln.

Unintended Read Unintended write

Information leak Malicious execution

Exfiltrate data Modify Code
Modify

Control Data
Modify

Non-control Data

Interpret
Exfiltrated data

Inject attacker-
controlled code

Inject attacker-
controlled addr.

Inject attacker-
controlled data

Execute
modified code

Execute injected
code fragment

Indirect jump to
corrupted addr.

Return to
corrupted addr.

Execute code
gadget

Execute data-
oriented gadget

Use of corrupt
data

Software Compartmentalization: Code Integrity, Pointer
integrity, Memory Management

Software Testing: Fuzzing, symbolic exec., sanitizers
Memory safety: Static analysis, safe languages

Software Diversification: ASLR, ISR, DSR

Last line of defense:
W+X, DEP, Static/Run-time Attestation

Run-time Integrity: Control Flow Integrity,
Data flow integrity

Root of
Trust
(RoT)

Secure Boot

OS’s

TPMs

TEEs

Concluding remarks

92

1

2

3

4

5

Memory
Vulnerability

Integrity
Violation

Exploit
Payload

Exploit
Dispatch

Exploit
Execution

6 Attack

Out-of-bounds pointer Dangling Pointer Format string vuln.

Unintended Read Unintended write

Information leak Malicious execution

Exfiltrate data Modify Code
Modify

Control Data
Modify

Non-control Data

Interpret
Exfiltrated data

Inject attacker-
controlled code

Inject attacker-
controlled addr.

Inject attacker-
controlled data

Execute
modified code

Execute injected
code fragment

Indirect jump to
corrupted addr.

Return to
corrupted addr.

Execute code
gadget

Execute data-
oriented gadget

Use of corrupt
data

Software Compartmentalization: Code Integrity, Pointer
integrity, Memory Management

Software Testing: Fuzzing, symbolic exec., sanitizers
Memory safety: Static analysis, safe languages

Software Diversification: ASLR, ISR, DSR

Last line of defense:
W+X, DEP, Static/Run-time Attestation

Run-time Integrity: Control Flow Integrity,
Data flow integrity

Root of
Trust
(RoT)

Secure Boot

OS’s

TPMs

TEEs

Modules 3, 4, 5

Concluding remarks

93

1

2

3

4

5

Memory
Vulnerability

Integrity
Violation

Exploit
Payload

Exploit
Dispatch

Exploit
Execution

6 Attack

Out-of-bounds pointer Dangling Pointer Format string vuln.

Unintended Read Unintended write

Information leak Malicious execution

Exfiltrate data Modify Code
Modify

Control Data
Modify

Non-control Data

Interpret
Exfiltrated data

Inject attacker-
controlled code

Inject attacker-
controlled addr.

Inject attacker-
controlled data

Execute
modified code

Execute injected
code fragment

Indirect jump to
corrupted addr.

Return to
corrupted addr.

Execute code
gadget

Execute data-
oriented gadget

Use of corrupt
data

Software Compartmentalization: Code Integrity, Pointer
integrity, Memory Management

Software Testing: Fuzzing, symbolic exec., sanitizers
Memory safety: Static analysis, safe languages

Software Diversification: ASLR, ISR, DSR

Last line of defense:
W+X, DEP, Static/Run-time Attestation

Run-time Integrity: Control Flow Integrity,
Data flow integrity

Root of
Trust
(RoT)

Secure Boot

OS’s

TPMs

TEEs

Modules 3, 4, 5

Modules 6, 7, 8

Concluding remarks

94

1

2

3

4

5

Memory
Vulnerability

Integrity
Violation

Exploit
Payload

Exploit
Dispatch

Exploit
Execution

6 Attack

Out-of-bounds pointer Dangling Pointer Format string vuln.

Unintended Read Unintended write

Information leak Malicious execution

Exfiltrate data Modify Code
Modify

Control Data
Modify

Non-control Data

Interpret
Exfiltrated data

Inject attacker-
controlled code

Inject attacker-
controlled addr.

Inject attacker-
controlled data

Execute
modified code

Execute injected
code fragment

Indirect jump to
corrupted addr.

Return to
corrupted addr.

Execute code
gadget

Execute data-
oriented gadget

Use of corrupt
data

Software Compartmentalization: Code Integrity, Pointer
integrity, Memory Management

Software Testing: Fuzzing, symbolic exec., sanitizers
Memory safety: Static analysis, safe languages

Software Diversification: ASLR, ISR, DSR

Last line of defense:
W+X, DEP, Static/Run-time Attestation

Run-time Integrity: Control Flow Integrity,
Data flow integrity

Root of
Trust
(RoT)

Secure Boot

OS’s

TPMs

TEEs

Modules 3, 4, 5

Modules 6, 7, 8

Modules 6, 7, 8

Concluding remarks

95

1

2

3

4

5

Memory
Vulnerability

Integrity
Violation

Exploit
Payload

Exploit
Dispatch

Exploit
Execution

6 Attack

Out-of-bounds pointer Dangling Pointer Format string vuln.

Unintended Read Unintended write

Information leak Malicious execution

Exfiltrate data Modify Code
Modify

Control Data
Modify

Non-control Data

Interpret
Exfiltrated data

Inject attacker-
controlled code

Inject attacker-
controlled addr.

Inject attacker-
controlled data

Execute
modified code

Execute injected
code fragment

Indirect jump to
corrupted addr.

Return to
corrupted addr.

Execute code
gadget

Execute data-
oriented gadget

Use of corrupt
data

Software Compartmentalization: Code Integrity, Pointer
integrity, Memory Management

Software Testing: Fuzzing, symbolic exec., sanitizers
Memory safety: Static analysis, safe languages

Software Diversification: ASLR, ISR, DSR

Last line of defense:
W+X, DEP, Static/Run-time Attestation

Run-time Integrity: Control Flow Integrity,
Data flow integrity

Root of
Trust
(RoT)

Secure Boot

OS’s

TPMs

TEEs

Modules 3, 4, 5

Modules 6, 7, 8

Modules 6, 7, 8

Bonus:
Ethics (Module 9)

Research (Module 10)

Concluding thoughts…

What is Software and System Security?

Mechanisms combining software AND roots of trust to:
• Detect memory vulnerabilities via software testing and memory safety
• Prevent integrity violations via compartmentalization, access control,

memory management
• Prevent exploiting vulnerabilities with software diversification
• Prevent dispatching of payloads via run-time defenses
• Prove/ensure execution itself is valid

96

Concluding thoughts…

What is Software and System Security?

Mechanisms combining software AND roots of trust to:
• Detect memory vulnerabilities via software testing and memory safety
• Prevent integrity violations via compartmentalization, access control,

memory management
• Prevent exploiting vulnerabilities with software diversification
• Prevent dispatching of payloads via run-time defenses
• Prove/ensure execution itself is valid

97

Thank you for a great term! Wish you all the best!

That’s all for today!
Resources:
• SONY Press Centre (UK)
• PULPino
• PULPissimo
• Ibex
• openMSP430
• MSP430 IPE
• TrustZone-M Basics
• GAROTA
• C-FLAT

98

https://www.sony.co.uk/presscentre/sony-launches-camera-verify-feature-for-its-camera-authenticity-solution-for-news-organisations
https://www.sony.co.uk/presscentre/sony-launches-camera-verify-feature-for-its-camera-authenticity-solution-for-news-organisations
https://www.sony.co.uk/presscentre/sony-launches-camera-verify-feature-for-its-camera-authenticity-solution-for-news-organisations
https://www.sony.co.uk/presscentre/sony-launches-camera-verify-feature-for-its-camera-authenticity-solution-for-news-organisations
https://github.com/pulp-platform/pulpino/
https://github.com/pulp-platform/pulpino/
https://github.com/pulp-platform/pulpino/
https://github.com/pulp-platform/pulpissimo
https://github.com/pulp-platform/pulpissimo
https://github.com/lowRISC/ibex
https://github.com/lowRISC/ibex
https://opencores.org/projects/openmsp430
https://opencores.org/projects/openmsp430
https://www.ti.com/lit/an/slaa685/slaa685.pdf?ts=1753684852311&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/an/slaa685/slaa685.pdf?ts=1753684852311&ref_url=https%253A%252F%252Fwww.google.com%252F
https://embeddedsecurity.io/sec-tz-basics
https://embeddedsecurity.io/sec-tz-basics
https://embeddedsecurity.io/sec-tz-basics
https://embeddedsecurity.io/sec-tz-basics
https://www.usenix.org/system/files/sec22-aliaj.pdf
https://www.usenix.org/system/files/sec22-aliaj.pdf
https://www.usenix.org/system/files/sec22-aliaj.pdf
https://arxiv.org/abs/1605.07763
https://arxiv.org/abs/1605.07763
https://arxiv.org/abs/1605.07763
https://arxiv.org/abs/1605.07763

99

	Slide 1: Module: Research Lecture
	Slide 2: Reminders & Recap
	Slide 3: Reminders & Recap
	Slide 4: Reminders & Recap
	Slide 5: Follow up from last time…
	Slide 6: Follow up from last time…
	Slide 7: Follow up from last time…
	Slide 8: Follow up from last time…
	Slide 9: Outline
	Slide 10: Outline
	Slide 11: System models revisited…
	Slide 12: System models revisited…
	Slide 13: System models revisited…
	Slide 14: System models revisited…
	Slide 15: System models revisited…
	Slide 16: System models revisited…
	Slide 17: System models revisited…
	Slide 18: System models revisited…
	Slide 19: System models revisited…
	Slide 20: System models revisited…
	Slide 21: System models revisited…
	Slide 22: System models revisited…
	Slide 23: System models revisited…
	Slide 24: System models revisited…
	Slide 25: System models revisited…
	Slide 26: System models revisited…
	Slide 27: RISC-V
	Slide 28: RISC-V
	Slide 29: RISC-V
	Slide 30: RISC-V
	Slide 31: Other open cores:
	Slide 32: Commercial extensions for MCUs
	Slide 33: Commercial extensions for MCUs
	Slide 34: ARM Cortex-M Processors
	Slide 35: ARM Cortex-M Processors
	Slide 36: ARM Cortex-M Processors
	Slide 37: ARM Cortex-M Processors
	Slide 38: TrustZone-M
	Slide 39: TrustZone-M
	Slide 40: TrustZone-M
	Slide 41: TrustZone-M
	Slide 42: TrustZone-M
	Slide 43: TrustZone-M
	Slide 44: TrustZone-M
	Slide 45: TrustZone-M
	Slide 46: TrustZone-M
	Slide 47: TrustZone-M
	Slide 48: TrustZone-M
	Slide 49: TrustZone-M
	Slide 50: TrustZone-M
	Slide 51: Outline
	Slide 52: Outline
	Slide 53: Availability in MCUs
	Slide 54: Availability in MCUs
	Slide 55: Availability in MCUs
	Slide 56: Availability in MCUs
	Slide 57: Availability in MCUs
	Slide 58: Availability in MCUs
	Slide 59: Availability in MCUs
	Slide 60: Availability in MCUs
	Slide 61: Availability in MCUs
	Slide 62: Availability in MCUs
	Slide 63: Availability in MCUs
	Slide 64: Availability in MCUs
	Slide 65: Availability in MCUs
	Slide 66: Outline
	Slide 67: Run-time Attestation
	Slide 68: Run-time Attestation
	Slide 69: Run-time Attestation
	Slide 70: Run-time Attestation
	Slide 71: Run-time Attesation
	Slide 72: Control Flow Attestation
	Slide 73: Control Flow Attestation
	Slide 74: C-FLAT Approach
	Slide 75: C-FLAT Approach
	Slide 76: C-FLAT Approach
	Slide 77: C-FLAT Approach
	Slide 78: C-FLAT Approach
	Slide 79: C-FLAT Approach
	Slide 80: C-FLAT Approach
	Slide 81: C-FLAT
	Slide 82: Outline
	Slide 83: Concluding remarks
	Slide 84: Concluding remarks
	Slide 85: Concluding remarks
	Slide 86: Concluding remarks
	Slide 87: Concluding remarks
	Slide 88: Concluding remarks
	Slide 89: Concluding remarks
	Slide 90: Concluding remarks
	Slide 91: Concluding remarks
	Slide 92: Concluding remarks
	Slide 93: Concluding remarks
	Slide 94: Concluding remarks
	Slide 95: Concluding remarks
	Slide 96: Concluding thoughts…
	Slide 97: Concluding thoughts…
	Slide 98: That’s all for today!
	Slide 99

