
Module: Usable Security
Lecture: Authentication and attestation

Adam Caulfield
University of Waterloo

Spring 2025

CS 453/698: Software and Systems Security

1



Reminders & Recap
Reminders:
• A3 is released

Recap – last time we covered:
Access control
• Policies
• Models
• Mechanisms

2

https://watssec.github.io/cs453-s25/assignments/a3/


Today
Authentication
• Definitions and factors
• What is the adversary model?

• Password protocols 
• Alternative methods

Attestation
• Key differences from authentication
• Requirements
• Attestation protocols

3



Authentication
Definition: the process or action or proving something to be genuine, true, or 
valid. In computing, it refers to the process or action of verifying the identity of a 
user or process.

Interaction between two entities → Verifier and Prover

Factors:
• A Prover secret / identity

• Password, PIN, answer to secret question, ….
• Biometrics 

• A component in use by the Prover
• ATM card, badge, browser cookie, phone, ….

4



Authentication
System & Adversary Model

5

Alice Bob



Authentication
System & Adversary Model

6

Alice
(Prover)

Bob
(Verifier)

“Here’s proof that I am Alice: H”



Authentication
System & Adversary Model

7

Alice
(Prover)

Bob
(Verifier)

Adv.

“Here’s proof that I am Alice: H”



Authentication
System & Adversary Model

8

Alice
(Prover)

Bob
(Verifier)

Adv.

“Here’s proof that I am Alice: H”

Bob must determine:
1. H is from Alice
2. H’ is not from Alice



Authentication
System & Adversary Model

9

Alice
(Prover)

Bob
(Verifier)

Adv.

“Here’s proof that I am Alice: H”

Bob must determine:
1. H is from Alice
2. H’ is not from Alice

Adversary tries to:
1. Produce H’ that Bob accepts
2. Succeed with or without knowing Alice’s secrets



Authentication
System & Adversary Model

System:
• Alice and Bob (and their devices) are honest

• Network availability (e.g., no denial of service)

Adversary:
• Knows the algorithm used for producing and verifying proof

• Sits on the network

• Aims to forge proofs and claim false identity

10



Authentication
System & Adversary Model

System:
• Alice and Bob (and their devices) are honest

• Network availability (e.g., no denial of service)

Adversary:
• Knows the algorithm used for producing and verifying proof

• Sits on the network

• Aims to forge proofs and claim false identity

Approach: Passwords, public-key infrastructure (PKI), biometrics, etc.

11



Authentication via Passwords
Passwords:
• One of the oldest authentication mechanisms used in computer systems
• Origins: 1960s →MIT’s Compatible Time-Sharing System (CTSS)

Password guessing attacks:
• Brute force:  test 958 passwords in 5.5 hours using 25 GPUs
• Enough to brute force every possible 8-character password containing:

• Upper-case letters
• Lower-case letters
• Digits
• Symbols

12

https://www.wired.com/2012/01/computer-password/
https://arstechnica.com/information-technology/2012/12/25-gpu-cluster-cracks-every-standard-windows-password-in-6-hours/


Authentication via Passwords

13
Source

Difficulty increase exponentially with length

But:
• Exhaustive search assumes people chose passwords 

randomly

People tend to create a structured password:
• Root: a core word

• Appendage: prefix or suffix on the core word

• Ex: “abc123” and “123abc”

• Ex: “rootGMail123” and “rootLinkedIn123”

June 2012 LinkedIn leak: ~6.5 million passwords leaked

https://www.keepersecurity.com/blog/2022/12/01/top-myths-about-password-security/
https://www.zdnet.com/home-and-office/home-entertainment/how-to-clear-your-tv-cache-and-why-it-makes-such-a-big-difference-to-performance/


Authentication via Passwords
NIST Guidelines for passwords (related to the phrase itself)
• 15-64 characters

• Accept all printable ASCII characters 
• Including spacebar

• Require users change passwords if compromise

• Verifiers can compare passwords to blocklist containing:
• Passwords obtained from previous breach corpus
• Dictionary words
• Context-specific words (e.g., name of the service)

• And more from NIST…

Testing strength of your password (via security.org)
• Even better… (The Password Game) ☺ 

14

https://pages.nist.gov/800-63-4/sp800-63b.html#password
https://www.security.org/how-secure-is-my-password/
https://neal.fun/password-game/


Password Protocols
Formal modeling of passwords: 
Useful for examining the pros and cons of several password-based authentication protocols

15



Password Protocols
Formal modeling of passwords: 
Useful for examining the pros and cons of several password-based authentication protocols

16

User System

Registration: 
username, F(password)



Password Protocols
Formal modeling of passwords: 
Useful for examining the pros and cons of several password-based authentication protocols

17

User System

Registration: 
username, F(password)

User System

Authentication
username, G(password’)

C( F(password), G(password’) )



Password Protocols
Formal modeling of passwords: 
u: User identifier

(p, q): Passphrase at Reg./Auth. time

(G, F): mapping of phrase to token at Reg./Auth. Time

C: function to evaluate correctness

 

18

User
System

Registration: 
u, F(p)

User
System

Authentication
u, G(q)

C( F(p), G(q) )



Password Protocols
Formal modeling of passwords: 
u: User identifier

(p, q): Passphrase at Reg./Auth. time

(G, F): mapping of phrase to token at Reg./Auth. Time

C: function to evaluate correctness

 

What is the correctness requirement?

19

User
System

Registration: 
u, F(p)

User
System

Authentication
u, G(q)

C( F(p), G(q) )



Password Protocols
Formal modeling of passwords: 
u: User identifier

(p, q): Passphrase at Reg./Auth. time

(G, F): mapping of phrase to token at Reg./Auth. Time

C: function to evaluate correctness

 

What is the correctness requirement?

• (p = q) → C( F(p), G(q) ) = True

• (p != q) → C( F(p), G(q) ) = False

20

User
System

Registration: 
u, F(p)

User
System

Authentication
u, G(q)

C( F(p), G(q) )



Password Protocols
Formal modeling of passwords: 
u: User identifier

(p, q): Passphrase at Reg./Auth. time

(G, F): mapping of phrase to token at Reg./Auth. Time

C: function to evaluate correctness

 

What is the correctness requirement?

• (p = q) → C( F(p), G(q) ) = True

• (p != q) → C( F(p), G(q) ) = False

Let’s design a simple protocol to satisfy this 
requirement…

21

User
System

Registration: 
u, F(p)

User
System

Authentication
u, G(q)

C( F(p), G(q) )



Password Protocols
Simple protocol --- Done!
F(p) → p
G(q) → q
C(x, y) → x ?= y

22

User
System

Registration: 
u, p

User
System

Authentication
u, q

C( q, p )



Password Protocols
Simple protocol --- Done!
F(p) → p
G(q) → q
C(x, y) → x ?= y

What’s wrong with this scheme?

23

User
System

Registration: 
u, p

User
System

Authentication
u, q

C( q, p )



Password Protocols
Simple protocol --- Done!
F(p) → p
G(q) → q
C(x, y) → x ?= y

What’s wrong with this scheme?
Stores passwords in plaintext
• System might have another vulnerability 

• Leaked plaintext password breaks the protocol

24

User
System

Registration: 
u, p

User
System

Authentication
u, q

C( q, p )



Password Protocols
Alternative approach… use a hash
F(p) → Hash(p)
G(q) → Hash(q)
C(x, y) → x ?= y 
 
What is a hash function?
Takes arbitrary length string x and computes fixed-length 
digest: y = Hash(x)
• Deterministic function: H(x) always produces a single y
• Examples: MD5, SHA1, SHA2, SHA3 

A hash function is cryptographically secure if it has…
• Pre-image resistance: 

• Given y, it is hard to find x s.t. Hash(x) = y

• Second preimage resistance:
• Given x, it is hard to find x’ != x and h(x) = h(x’)

• Collision-resistance
• It is hard to find two values (x, x’) such that h(x) = h(x’)

25

User
System

Registration: 
u, Hash(p)

User
System

Authentication
u, Hash(q)

C( Hash(p), Hash(q) )



Password Protocols
Alternative approach… use a hash
F(p) → Hash(p)
G(q) → Hash(q)
C(x, y) → x ?= y 
 
What is a hash function?
• Takes arbitrary length string x
• Computes fixed-length digest: y = Hash(x)
• Deterministic: H(x) always produces a single y
• Examples: MD5, SHA1, SHA2, SHA3 

A hash function is cryptographically secure if it has…
• Pre-image resistance: 

• Given y, it is hard to find x s.t. Hash(x) = y

• Second preimage resistance:
• Given x, it is hard to find x’ != x and h(x) = h(x’)

• Collision-resistance
• It is hard to find two values (x, x’) such that h(x) = h(x’) 26

User
System

Registration: 
u, Hash(p)

User
System

Authentication
u, Hash(q)

C( Hash(p), Hash(q) )



Password Protocols
Alternative approach… use a hash
F(p) → Hash(p)
G(q) → Hash(q)
C(x, y) → x ?= y 
 
What is a hash function?
• Takes arbitrary length string x
• Computes fixed-length digest: y = Hash(x)
• Deterministic: H(x) always produces a single y
• Examples: MD5, SHA1, SHA2, SHA3 

A hash function is cryptographically secure if it has…
• Pre-image resistance: 

• Given y, it is hard to find x s.t. Hash(x) = y

• Second preimage resistance:
• Given x, it is hard to find x’ != x and h(x) = h(x’)

• Collision-resistance
• It is hard to find two values (x, x’) such that h(x) = h(x’) 27

User
System

Registration: 
u, Hash(p)

User
System

Authentication
u, Hash(q)

C( Hash(p), Hash(q) )



Password Protocols
Let’s use a cryptographic hash function H(.)
Does this satisfy the correctness requirement?

The first half :

p = q → C( H(p), H(q) ) = ( H(p) ?= H(q) ) = True

28

User
System

Registration: 
u, H(p)

User
System

Authentication
u, H(q)

C( H(p), H(q) )



Password Protocols
Let’s use a cryptographic hash function H(.)
Does this satisfy the correctness requirement?

The first half :

p = q → C( H(p), H(q) ) = ( H(p) ?= H(q) ) = True

• Yes: H(p) is deterministic

29

User
System

Registration: 
u, H(p)

User
System

Authentication
u, H(q)

C( H(p), H(q) )



Password Protocols
Let’s use a cryptographic hash function H(.)
Does this satisfy the correctness requirement?

The first half :

p = q → C( H(p), H(q) ) = ( H(p) ?= H(q) ) = True

• Yes: H(p) is deterministic

The second half:

p != q → C( H(p), H(q) ) = ( H(p) ?= H(q) ) = False

30

User
System

Registration: 
u, H(p)

User
System

Authentication
u, H(q)

C( H(p), H(q) )



Password Protocols
Let’s use a cryptographic hash function H(.)
Does this satisfy the correctness requirement?

The first half :

p = q → C( H(p), H(q) ) = ( H(p) ?= H(q) ) = True

• Yes: H(p) is deterministic

The second half:

p != q → C( H(p), H(q) ) = ( H(p) ?= H(q) ) = False

• H() is collision resistant with high probability…

31

User
System

Registration: 
u, H(p)

User
System

Authentication
u, H(q)

C( H(p), H(q) )



Password Protocols
Let’s use a cryptographic hash function H(.)
Does this satisfy the correctness requirement?

The first half :

p = q → C( H(p), H(q) ) = ( H(p) ?= H(q) ) = True

• Yes: H(p) is deterministic

The second half:

p != q → C( H(p), H(q) ) = ( H(p) ?= H(q) ) = False

• H() is collision resistant with high probability…

p != q → Pr[C( H(p), H(q) ) = ( H(p) ?= H(q) ) = True] < e

• Correct with a minimal error (e)

32

User
System

Registration: 
u, H(p)

User
System

Authentication
u, H(q)

C( H(p), H(q) )



Password Protocols
Weaknesses of hash-based protocol:
• Possible collisions with error (e)

• Anything else?

33

User
System

Registration: 
u, H(p)

User
System

Authentication
u, H(q)

C( H(p), H(q) )



Password Protocols
Weaknesses of hash-based protocol:
• Possible collisions with error (e)

• Anything else?
• Same password, same digest 

34

User
System

Registration: 
u, H(p)

User
System

Authentication
u, H(q)

C( H(p), H(q) )



Password Protocols
Weaknesses of hash-based protocol:
• Possible collisions with error (e)

• Anything else?
• Same password, same digest 

How to mitigate? → Salted passwords

35

User
System

Registration: 
u, H(p)

User
System

Authentication
u, H(q)

C( H(p), H(q) )



Password Protocols
Salted password protocol (v1):
F(p) → H(p | s)

G(q) → H(q | s)

C(x,y) → x ?= y

The digest of the password is not stored in plaintext

Challenge:

• User is responsible for storing the salt in use

• Can still be an inconvenience 

36

User
System

Registration: 
u, H(p | s)

User
System

Authentication
u, H(q | s’)

C( H(p | s), H(q | s’) )



Password Protocols
Salted password protocol (v2):
• User sends (s) during registration

• System stores the salt 

Same functions:

F(p) → H(p | s)

G(q) → H(q | s)

C(x,y) → x ?= y

Downside:

• Requires an extra roundtrip into the authentication 

• Potentially enables user-probing attack
• Request salts for user id’s
• If System returns back a salt, can use to guess p again

37

User
System

Registration: 
u, s, H(p | s)

User
Systemu, H(q | s’)

C( H(p | s’), H(q | s’) )

Authentication
u

s

Store: 
u → s

Fetch
s  u



Password Protocols
Salted password protocol (v3):
• Salt is assigned by the System and is oblivious to the 

user

Salt applied at comparison:

F(p) → H(p)

G(q) → H(q)

C(x, y) → H(x | s) ?= H(y | s)

Result:

• Stronger: adversary must determine both p and s

• But still (potentially) possible to brute force

• Example: 
• p is not a strong password (e.g., previously leaked, in dictionary)
• Reduced to brute-forcing s 38

User
System

Registration: 
u, H(p)

User
System

Authentication
u, H(q)

C( H(H(p) | s), H(H(q) | s) )

Gen:
 u → s

Fetch
s  u



Password Protocols
The problem: inputs are either
• Sent over the network
• Potentially leaked due to use in other systems 
• Possible to brute force

So we need something that is…
• A unique secret per system
• Challenging to brute force

PKI saves the day!

39



Password Protocols
PKI password protocol:
• At registration, store user’s verification key

Define functions based on PKI:
F(u) → vk   : map user (u) to verification/public key (vk)

G(r) → Ssk(r)   : signature over r using secret/private key (sk)

C(vk, r,  Ssk(r)) → Vvk(r,  Ssk(r))  :  signature verification

Result:
• r → nonce

• Relying on signature scheme’s hardness assumption

• Requires/assumes secret key management by User

• Example: passkey, passwordless ssh

40

User
System

Registration: 
u, vk

User
Systemu, Ssk(r)

C( vk, [r, Ssk(r)] )

Authentication
u

r

Store:
(u, vk)

Gen.
r



Alternative methods
Many alternatives to text-based passwords
• Unlock patterns
• Geographical based passwords

Biometrics
• Fingerprints, handwriting, typing patterns
• If observed trait is sufficiently close to the previously stored trait, accept the user
• Since observed fingerprint will never be completely identical to a previously stored 

fingerprint of the same user

Other challenges with biometrics:
• Privacy/secrecy concerns

• Accuracy

• Legal/ethical concerns
41



Attestation
From authentication to attestation….

Recall: Authentication assumes
• Devices (aka Alice and Bob) are honest
• The Adversary controls the network

• Messages can be intercepted, reads, modified, or replayed by the adversary

Attestation assumes:
• Both the network and a prover’s software might be under control by an 

Adversary
• Less trust → stronger Adversary

42



Attestation
From authentication to attestation….

Recall: Authentication assumes
• Devices (aka Alice and Bob) are honest
• The Adversary controls the network

• Messages can be intercepted, reads, modified, or replayed by the adversary

What about a slightly stronger adversary?
• Both the network and a prover’s software might be under control by an 

Adversary
• Less trust → stronger Adversary

43



Attestation
Example use case: remotely-operated sensor

44

Verifier Prover



Attestation
Example use case: remotely-operated sensor

45

Verifier Prover

“Is there a fire?”



Attestation
Example use case: remotely-operated sensor

46

Verifier Prover

“Is there a fire?”

“No fire” [signed]



Attestation
Example use case: remotely-operated sensor

47

Verifier Prover

“Is there a fire?”

“Fire!!” [signed]



Attestation
Example use case: remotely-operated sensor

48

Verifier Prover

“Is there a fire?”

“No fire” [signed]

Verifier relies on this to 
make further decisions 

(e.g., send help)



Attestation
Example use case: remotely-operated sensor

49

Verifier Prover

“Is there a fire?”

Infected

Problem: 
• Compromised software might 

spoof results



Attestation
Example use case: remotely-operated sensor

50

Verifier Prover

“Is there a fire?”

Infected

Problem: 
• Compromised software might 

spoof results “No fire”



Attestation
Example use case: remotely-operated sensor

51

Verifier Prover

“Is there a fire?”

Infected

Problem: 
• Compromised software might 

spoof results

Authentication isn’t enough:
• Tell’s Verifier that the message 

came from the Prover
• Doesn’t tell Verifier if it is 

trustworthy

“No fire” [signed]



Attestation
What is Attestation?

Definition: a protocol/method in which a Prover authenticates its hardware and 
software configuration to a remote Verifier with the goal of enabling a the Verifier 
to determine the level of trust in the integrity of Prover.

Remote Attestation → Prover and Verifier are connected over the network

Slightly different than Authentication, but sounds similar:
• Unforgeable evidence
• Verifier/Challenger & Prover

Key difference: Prover’s software is untrusted 52



Adversary May Have Full 
Control of Prover’s 
Software State

Attestation
Example use case: remotely-operated sensor

Let’s look into two instantiations…
53

(4) Verify response,
     decide if Prover 
should be trusted

Verifier

(2) Generate a proof = authenticated 
challenge-based measurement of its own 
memory (via some cryptographic integrity-
ensuring function)

Prover

(3) Response:

I’m running software X. 
Here is a proof!

(1) Challenge:

What software are you 
running?



Remote Attestation Protocols
But first, clarify the assumptions:

Adversary:
• Has control over the network (same as for Authentication Protocols)
• Has control over any software in Prover that is not explicitly protected

• Read, write, execute

For now, make one more assumption…
• Prover has a Root of Trust (RoT) that can

• Securely store keys
• Can compute cryptographic functions without leaking keys
• Guarantees are upheld even when all software has been compromised/modified

• How? Coming up in later lectures…. 
54



Remote Attestation Protocols
But first, clarify the assumptions:

Adversary:
• Has control over the network (same as for Authentication Protocols)
• Has control over any software in Prover that is not explicitly protected

• Read, write, execute

For now, make one more assumption…
• Prover has a Root of Trust (RoT) that can

• Securely store keys
• Can compute cryptographic functions without leaking keys
• Guarantees are upheld even when all software has been compromised/modified

• How? Coming up in later lectures…. 
55



Remote Attestation Protocols
Two Remote Attestation Protocols
• Using symmetric key: 

• Verifier and Prover’s RoT share a secret key

• Using public key: 
• Verifier knows a public key corresponding to Prover’s RoT’s secret key

56



Attestation
Protocol 1: Verifier and Prover’s RoT share symmetric key (K)

57

Verifier Prover



Attestation
Protocol 1: Verifier and Prover’s RoT share symmetric key (K)

58

Verifier Prover

(0) Generate a 
challenge (chal) by 

choosing a large 
random nonce



Attestation
Protocol 1: Verifier and Prover’s RoT share symmetric key (K)

59

Verifier Prover

(0) Generate a 
challenge (chal) by 

choosing a large 
random nonce

(1) Challenge:

Send chal 



Attestation
Protocol 1: Verifier and Prover’s RoT share symmetric key (K)

60

Verifier Prover

(0) Generate a 
challenge (chal) by 

choosing a large 
random nonce

(1) Challenge:

Send chal 

(2) The RoT in Prover uses K to compute:
 

h = MACK(MEM || chal)



Attestation
Protocol 1: Verifier and Prover’s RoT share symmetric key (K)

61

Verifier Prover

(0) Generate a 
challenge (chal) by 

choosing a large 
random nonce

(1) Challenge:

Send chal 

(2) The RoT in Prover uses K to compute:
 

h = MACK(MEM || chal)

(3) Response:

        MACK(MEM | chal)



Attestation
Protocol 1: Verifier and Prover’s RoT share symmetric key (K)

62

Verifier Prover

(0) Generate a 
challenge (chal) by 

choosing a large 
random nonce

(1) Challenge:

Send chal 

(2) The RoT in Prover uses K to compute:
 

h = MACK(MEM || chal)

(3) Response:

        MACK(MEM | chal)(4) Verify response

MACK(MEM || chal)
==

MACK(MEMexp || chal)



Attestation
In this protocol, Prover’s RoT is trusted to:

• Compute a MAC over the current MEM snapshot and chal
• Not an older version of MEM
• Not some other data or input

• Securely store and use K without ever leaking it

• To do so despite Prover’s software attempting to potentially interfere

63



Attestation
Protocol 2: Prover’s RoT stores a secret key (SK); Verifier knows public key (PK)

64

Verifier Prover

(0) Choose a one-time 
(unique) random key

otK



Attestation
Protocol 2: Prover’s RoT stores a secret key (SK); Verifier knows public key (PK)

65

Verifier Prover

(0) Choose a one-time 
(unique) random key

otK

(1) Challenge:

Send Enc(PK, otK)



Attestation
Protocol 2: Prover’s RoT stores a secret key (SK); Verifier knows public key (PK)

66

Verifier Prover

(0) Choose a one-time 
(unique) random key

otK

(1) Challenge:

Send Enc(PK, otK)
(2) The RoT in Prover uses SK to decrypt:

otK  Dec(SK, Enc(PK, otK))

Then computes:
MACotK (MEM || otK)



Attestation
Protocol 2: Prover’s RoT stores a secret key (SK); Verifier knows public key (PK)

67

Verifier Prover

(0) Choose a one-time 
(unique) random key

otK

(1) Challenge:

Send Enc(PK, otK)

(3) Response:

        MACotK (MEM | otK)

(2) The RoT in Prover uses SK to decrypt:
otK  Dec(SK, Enc(PK, otK))

Then computes:
MACotK (MEM || otK)



Attestation
Protocol 2: Prover’s RoT stores a secret key (SK); Verifier knows public key (PK)

68

Verifier Prover

(0) Choose a one-time 
(unique) random key

otK

(1) Challenge:

Send Enc(PK, otK)
(2) The RoT in Prover uses SK to decrypt:

otK  Dec(SK, Enc(PK, otK))

Then computes:
MACotK(MEM || otK)(3) Response:

        MACotK (MEM | otK)(4) Verify response

MACotK (MEM || otK)
==

MACotK (MEMexp || otK)



Attestation
In this protocol, Prover’s RoT is trusted to:
• Securely store SK and otK

• Decrypt and compute MAC without leakage

More expensive:
• One public key operation

• Good option for single-Prover & multiple-Verifier settings

Thought exercise:
• How can we build an attestation protocol with only public key operations?

69



That’s all for today!
Coming up….
• Next class: 

• Supply chain attacks & defenses (can attestation help?)

• After that: What can be used to obtain Prover RoT for Attestation?
• Secure boot?
• Something else? (… here comes Hardware & Mobile Security …)

Reminders:
• A3 is due on July 11
• No Class or instructor office hours next week

• July 1 – it is Canada Day
• July 3 – I will be away at a research conference

70

https://watssec.github.io/cs453-s25/assignments/a3/


71


	Default Section
	Slide 1: Module: Usable Security
	Slide 2: Reminders & Recap
	Slide 3: Today
	Slide 4: Authentication
	Slide 5: Authentication
	Slide 6: Authentication
	Slide 7: Authentication
	Slide 8: Authentication
	Slide 9: Authentication
	Slide 10: Authentication
	Slide 11: Authentication
	Slide 12: Authentication via Passwords
	Slide 13: Authentication via Passwords
	Slide 14: Authentication via Passwords
	Slide 15: Password Protocols
	Slide 16: Password Protocols
	Slide 17: Password Protocols
	Slide 18: Password Protocols
	Slide 19: Password Protocols
	Slide 20: Password Protocols
	Slide 21: Password Protocols
	Slide 22: Password Protocols
	Slide 23: Password Protocols
	Slide 24: Password Protocols
	Slide 25: Password Protocols
	Slide 26: Password Protocols
	Slide 27: Password Protocols
	Slide 28: Password Protocols
	Slide 29: Password Protocols
	Slide 30: Password Protocols
	Slide 31: Password Protocols
	Slide 32: Password Protocols
	Slide 33: Password Protocols
	Slide 34: Password Protocols
	Slide 35: Password Protocols
	Slide 36: Password Protocols
	Slide 37: Password Protocols
	Slide 38: Password Protocols
	Slide 39: Password Protocols
	Slide 40: Password Protocols
	Slide 41: Alternative methods
	Slide 42: Attestation
	Slide 43: Attestation
	Slide 44: Attestation
	Slide 45: Attestation
	Slide 46: Attestation
	Slide 47: Attestation
	Slide 48: Attestation
	Slide 49: Attestation
	Slide 50: Attestation
	Slide 51: Attestation
	Slide 52: Attestation
	Slide 53: Attestation
	Slide 54: Remote Attestation Protocols
	Slide 55: Remote Attestation Protocols
	Slide 56: Remote Attestation Protocols
	Slide 57: Attestation
	Slide 58: Attestation
	Slide 59: Attestation
	Slide 60: Attestation
	Slide 61: Attestation
	Slide 62: Attestation
	Slide 63: Attestation
	Slide 64: Attestation
	Slide 65: Attestation
	Slide 66: Attestation
	Slide 67: Attestation
	Slide 68: Attestation
	Slide 69: Attestation
	Slide 70: That’s all for today!
	Slide 71


