
Module: Usable Security
Lecture: Software Supply Chain Security

Adam Caulfield
University of Waterloo

Spring 2025

CS 453/698: Software and Systems Security

1



Reminders & Recap
Reminders:
• A3 is due on July 11
• Send your research project proposals to Meng and me!

Recap – last time we covered:
Authentication

• Adversary & system model
• Password protocols
• Alternative methods

Attestation
• Adversary & system model
• Example protocols

2

https://watssec.github.io/cs453-s25/assignments/a3/
https://watssec.github.io/cs453-s25/assignments/a3/


Today
Software Supply Chain Security

What is the software supply chain?

Attack vectors within the software supply chain

Example safeguards and their target attack vectors

Proof of concept safeguard: in-toto framework

3



Software Supply Chain Security
Supply Chain Security: 
Definition: the security of the ecosystem, processes, people, organizations, and 
distributors involved in the development, manufacturing, and delivery of finished 
solutions or products. 

Finished solution/product is software → Software Supply Chain Security

4



Software Supply Chain Security
Software Supply Chain:
Definition: a system of its participants with an interconnected set of resources 
and processes involved in the life cycle of software movement from the developer 
to the end user, namely, the design, development, manufacturing, supply, 
implementation, and support of programs and associated services. 

Can include various components & services
• Libraries, binaries
• Operating systems, package managers
• Compilers
• Development tools (e.g., IDEs, build systems, GitHub/Gitlab, CI/CD)

All make up the SBOM: Software Bill of Materials
• A list of ingredients that make up software components

5



Software Supply Chain Security
Key Characteristics of Software Supply Chain:

The goal:
• Deliver a software produce or service to end users

• Platform-as-a-Service, Software-as-a-Service

Entities
• Different organizations: developers, logistic, distribution, and assembly centers
• End users
• Might have an existing relationship (formal documented agreement)
• Can act as a supplier or customer

Two material/service streams:
• Upstream: streams related to product creation using third-party components
• Downstream: streams related to product delivery to end users

6



Software Supply Chain Models
(One) model of software supply chain structure

7

Component 
Supplier 1

Component 
Supplier 1

…

Component 
Supplier N

…



Software Supply Chain Models
(One) model of software supply chain structure

8

Component 
Supplier 1

Component 
Supplier 1

…

Component 
Supplier N

…

Software
Developer



Software Supply Chain Models
(One) model of software supply chain structure

9

Component 
Supplier 1

Component 
Supplier 1

…

Component 
Supplier N

Software
Developer

Distributor 1

…

Distributor M



Software Supply Chain Models
(One) model of software supply chain structure

10

Component 
Supplier 1

Component 
Supplier 1

…

Component 
Supplier N

Software
Developer

Distributor 1

…

Distributor M

User 1

User 2

User K

…



Software Supply Chain Models
(One) model of software supply chain structure

11

Component 
Supplier 1

Component 
Supplier 1

…

Component 
Supplier N

…

Software
Developer

Distributor 1

…

Distributor M

User 1

User 2

User K



Software Supply Chain Models
(One) model of software supply chain structure

12

Component 
Supplier 1

Component 
Supplier 1

…

Component 
Supplier N

…

Software
Developer

Distributor 1

…

Distributor M

Software Components

User 1

User 2

User K



Software Supply Chain Models
(One) model of software supply chain structure

13

Component 
Supplier 1

Component 
Supplier 1

…

Software
Developer

Distributor 1

…

Distributor M

Component 
Supplier N

User 1

User 2

User K

…

Software Components

Software



Software Supply Chain Models
(One) model of software supply chain structure

14

Component 
Supplier 1

Component 
Supplier 1

…

Software
Developer

Distributor 1

…

Distributor M

Component 
Supplier N

User 1

User 2

User K

…

Components pulled from upstream

Software Components

Software



Software Supply Chain Models
(One) model of software supply chain structure

15

Component 
Supplier 1

Component 
Supplier 1

…

Software
Developer

Distributor 1

…

Distributor M

Component 
Supplier N

User 1

User 2

User K

…

Components pulled from upstream Software pushed downstream

Software Components

Software



Software Supply Chain Models
Example: Python web application

16

PyPI packages 
(flask, numpy 

requests)

Auth0
SDK

SaaS web app 
in Python

GitHub
Releases

Docker 
Hub

User 1

User 2

User K

…

Components pulled from upstream Software pushed downstream

Software Components

Software



Software Supply Chain Models
Example: Embedded firmware in IoT Devices

17

ARM Ltd: 
CMSIS, HAL, 

crypto libraries

FreeRTOS

Bosch
(develops 
firmware)

Smart 
Thermostat 

Manufacturer

Smart Light 
Manufacturer

User 1

User 2

User K

…

Components pulled from upstream Software pushed downstream

Software Components

Software



Software Supply Chain Models

Slowly becomes more and more complex…

Very hard to track
• Visualization tools: it-depends

Across organizations: 
• Ecosystems Graphs of ML/AI software services 

18

https://github.com/trailofbits/it-depends?tab=readme-ov-file
https://github.com/trailofbits/it-depends?tab=readme-ov-file
https://github.com/trailofbits/it-depends?tab=readme-ov-file
https://crfm.stanford.edu/ecosystem-graphs/
https://crfm.stanford.edu/ecosystem-graphs/


Software Supply Chain Models

What about with open-source software (OSS)?

Many modern OSS package ecosystems 
• Enable deployment of OSS components 

• Examples: NPM (JavaScript), PyPI (Python), Crates (Rust)

• Put heavy emphasis on re-use and sharing

• Developers quickly depend on hundreds of transitive dependencies 

• Trust is sometimes implicitly placed in maintainers

Separate type of pipeline that feeds into creation software components…

19



Software Supply Chain Models
(One) high-level development and build model of OSS

Two classes of entities:

Maintainers
• Members of a development project who administer the depicted systems
• Provide review, approve contributions, define/trigger build processes

Contributors
• Submit code contributions (pull requests)
• Reviewed and merged into a project’s code base by maintainers

20



Software Supply Chain Models
(One) high-level development and build model of OSS

21

Contributor Maintainer



Software Supply Chain Models
(One) high-level development and build model of OSS

Core components:

Version Control System: 
• Holds a projects codebase & resources, tracks changes between versions

22

Contributor Maintainer

Version Control 
System

Codebase



Software Supply Chain Models
(One) high-level development and build model of OSS

Core components:

Build System: 
• The system used for building the component / package

• Executes a build process: injects source code, produces dependency tree & artifacts

23

Contributor Maintainer

Version Control 
System

Codebase

Build System

Build process



Software Supply Chain Models
(One) high-level development and build model of OSS

Core components:

Distribution platform: 
• Makes packages / components available (e.g., app stores, package repos)

24

Contributor Maintainer

Version Control 
System

Codebase

Build System

Build process

Distribution 
Platform

OSS packages 
(components)



Software Supply Chain Models
(One) high-level development and build model of OSS
Maintainer configures the distribution platform

25

Version Control 
System Build System Distribution 

Platform

Contributor Maintainer

OSS packages 
(components)

Build processCodebase

Configure

Setup Phase



Software Supply Chain Models
(One) high-level development and build model of OSS
• Maintainer configures the distribution platform

• Maintainer configures the build system

26

Version Control 
System Build System Distribution 

Platform

Contributor Maintainer

OSS packages 
(components)

Build processCodebase

Configure

Configure and 
setup build 

triggers

Setup Phase



Software Supply Chain Models
(One) high-level development and build model of OSS
• Contributor submits code via a pull request to the VCS

• e.g., GitHub or other platform

27

Version Control 
System Build System Distribution 

Platform

Contributor Maintainer

Create pull
request

OSS packages 
(components)

Build processCodebase

Configure

Configure and 
setup build 

triggers

Deployment Phase



Software Supply Chain Models
(One) high-level development and build model of OSS
• Maintainer commits directly (small approved changes)

• Or creates their own PRs 

28

Version Control 
System Build System Distribution 

Platform

Contributor Maintainer

Create pull
request

OSS packages 
(components)

Build processCodebase

Commit 
and Create Pull Request

Deployment Phase

Configure

Configure and 
setup build 

triggers



Software Supply Chain Models
(One) high-level development and build model of OSS
• Build system clones the current codebase 

• Also, it pulls dependencies. Then, it executes its build process

29

Version Control 
System Build System Distribution 

Platform

Contributor Maintainer

Create pull
request

OSS packages 
(components)

Build processCodebase

Commit 
and Create Pull Request

Clone

Pull

Deployment Phase

Configure

Configure and 
setup build 

triggers



Software Supply Chain Models
(One) high-level development and build model of OSS
• Package & push latest version to the distribution platform

30

Version Control 
System Build System Distribution 

Platform

Contributor Maintainer

Create pull
request

OSS packages 
(components)

Build processCodebase

Commit 
and Create Pull Request

Clone

Pull

Deployment Phase

Configure

Configure and 
setup build 

triggers

Push



Software Supply Chain Models
Complexity as OSS is introduced…

31

Component 
Supplier 1

Component 
Supplier 1

…

Software
Developer

Distributor 1

…

Distributor M

Component 
Supplier N

User 1

User 2

User K

…

Components pulled from upstream Software pushed downstream

Software Components

Software



Software Supply Chain Models
Complexity as OSS is introduced…

32

Component 
Supplier 1

Component 
Supplier 1

…

Software
Developer

Distributor 1

…

Distributor M

Proprietary 
Component 
Supplier N

User 1

User 2

User K

…

Components pulled from upstream Software pushed downstream

Software Components

Software



Software Supply Chain Attacks
Recall from “Reflections on Trusting Trust”
• “You can’t trust code that you did not totally create yourself. (Especially code 

from companies that employ people like me).”

How many attack surfaces are there within SBOM? 
• Malicious OSS contributions → malware 
• Malicious maintainers → backdoor in build system, distribution platform 
• Malicious dependencies
• Malicious software developers
• Malicious distributors / manufacturers
• Too many to count!

33

https://www.cs.cmu.edu/~rdriley/487/papers/Thompson_1984_ReflectionsonTrustingTrust.pdf
https://www.cs.cmu.edu/~rdriley/487/papers/Thompson_1984_ReflectionsonTrustingTrust.pdf
https://www.cs.cmu.edu/~rdriley/487/papers/Thompson_1984_ReflectionsonTrustingTrust.pdf


Software Supply Chain Attacks

34
Figure from “Security Threats, Countermeasures, and Challenges of Digital Supply Chains”

Can become quite complex and overwhelming depending on 
where you look…

https://dl.acm.org/doi/pdf/10.1145/3588999?casa_token=xvq6Svfu-UAAAAAA:Fe_8OkVqARRoYAA65u-JYhttV6a9PGcmVnh-Lo-oTROmsg7THRZ1LulVj1CaWeJmIzM-zRLoDQuvM4M


Software Supply Chain Attacks
Can become quite complex and overwhelming depending on 
where you look…

35Figure from “SoK: Taxonomy of Attacks on Open-Source Software Supply Chains”

https://oaklandsok.github.io/papers/ladisa2023.pdf
https://oaklandsok.github.io/papers/ladisa2023.pdf
https://oaklandsok.github.io/papers/ladisa2023.pdf


Software Supply Chain Attacks

Let’s fine-tune the focus…

36

Figure from “Backstabber’s Knife Collection: A Review of Open Source Software Supply Chain Attacks”

https://pmc.ncbi.nlm.nih.gov/articles/PMC7338168/pdf/978-3-030-52683-2_Chapter_2.pdf


Software Supply Chain Attacks

37

Classes of attacks and examples

Injection of code 
• Create a new malicious package 
• Avoids interference with other legitimate project maintainers
• Challenge → has to be discovered and referenced by downstream users
• Trojan horses
• Use (package/project/account name) after free
• Prey on human error → typosquatting

https://www.theregister.com/2018/02/10/github_account_name_reuse/
https://www.theregister.com/2018/02/10/github_account_name_reuse/


Software Supply Chain Attacks

38

Typosquatting: take advantage of user typos/mistakes to cause 
install of malicious package from distribution platform
 

1. Create a new package with a name similar to a popular package that includes 
the malicious code in the new package. Examples:
• Squat on PyPI the Debian package name: python-sqlite vs. sqlite

• English variants (color vs. colour)

• Unicode tricks → reqυests vs. requests

2. Upload it to a distribution platform (e.g., PyPI)

3. Wait for users to mistype (e.g.,. pip install python-sqlite)



Software Supply Chain Attacks

39

Classes of attacks and examples

Infect existing package
• Adversary may target an influential package

• Many downstream users
• Specific downstream user group

• Inject into sources, during the build, or into package repositories 
• Malicious pull request: claims to fix a bug or add a useful feature
• Direct commits using weak or compromised credentials
• Social engineering to become a maintainer 
• Compromised build system → e.g., compilers, network services

• Manipulate package downloads during build



Software Supply Chain Attacks

40

Classes of attacks and examples

Inject into repository system
• Use weak or compromised credentials
• Gain maintainer authorizations through social engineering
• Malicious package versions to alternative repositories or repository mirrors
• Less common attack vector



Software Supply Chain Attacks

41

Some notable examples:

CCleaner malware infection in 2017
• Software for managing apps and system maintenance (cleaning files)
• Attack stage: build / artifact creation
• Internal compromise: inserted malware into a software update
• Compromised before signing: user’s received a signed update

SolarWinds attack 2019-2020
• Malicious update in SolarWinds Orion monitoring software
• A hidden file injected among the update

XZ Utils backdoor 2024
• Backdoor added to Linux build of the xz compression library
• Malicious maintainer → obtained through social engineering

https://www.cisecurity.org/ms-isac/cyber-alert-ccleaner-software-supply-chain-compromise
https://www.fortinet.com/resources/cyberglossary/solarwinds-cyber-attack
https://www.gao.gov/blog/solarwinds-cyberattack-demands-significant-federal-and-private-sector-response-infographic
https://www.fortinet.com/resources/cyberglossary/solarwinds-cyber-attack
https://www.fortinet.com/resources/cyberglossary/solarwinds-cyber-attack
https://www.fortinet.com/resources/cyberglossary/solarwinds-cyber-attack
https://en.wikipedia.org/wiki/XZ_Utils_backdoor


Software Supply Chain Defenses
Possible safeguards for each entity along the supply chain

• Safeguards for consumers
• Safeguards for maintainers

42



Software Supply Chain Defenses
Safeguards for Consumers
• Can opt to build packages directly from source rather than pre-built artifacts

• Eliminate all risks related to the compromise of third party build services and repos

• Isolating the code

• Sandboxing it during execution

• Establishment of internal repository mirrors

43



Software Supply Chain Defenses
Safeguards for Maintainers
• Secure authentication
• Multi-factor authentication and strong password policies
• Maintain SBOM and perform dependency analysis
• Use hosted publicly accessible VCSs

• Careful merge request reviews
• Enable branch protection rules for sensitive branches

• Dedicated build services
• Ephemeral environments
• Isolated build steps – how?

• Reproducible builds
• Integrity checks on dependencies & SBOM

44



Reproducible Builds

45

Definition: the build process of a software product is reproducible if, 
after designating a specific version of its source code and all of its 
build dependencies, every build produces bit-for-bit identical 
artifacts, no matter the environment in which the build is being 
performed.

Threat model:
• Untrusted – the build process completed by a third party
• Trusted – multiple independent third parties (e.g., other users)

Users can establish trust in built executables if
• Developers submit a checksum of an artifact along with the source code
• User pulls source code, produces artifact, takes checksum
• Compare artifacts



Reproducible Builds

46

Figure from: “Reproducible Builds: Increasing the Integrity of Software Supply Chains”

https://hal.science/hal-03196519v1/document


Reproducible Builds

47

Challenges: can we make bit-for-bit identical artifacts?
• Multiple inputs → sources, linker, compiler, etc.
• Multiple outputs → executables, data, documentation, etc. 
• Build still may be unreproducible 

• Due to uncontrolled build inputs and build non-determinism

Uncontrolled build inputs
• Occur when toolchains allow the build process to be affected by the environment
• System time, environmental variables, arbitrary file paths

Build non-determinism
• Occurs when aspects of the build have non-deterministic characteristics or behaviors
• Some part of the output depends on a PRNG



Reproducible Builds

48

How to face these challenges?

One idea… could build a sanitized environment
• Always presents the same interface to the build system – “jails”
• Impose technical restrictions 
• Slower build times
• Doesn’t address non-determinism

Must ensure that:
• Build depends on only legitimate build inputs: 

• Source code, build dependencies, and the toolchain

• Non-deterministic behaviors do not affect the resulting artifacts



Reproducible Builds

49

Some other sources of non-determinism
 

Timestamps
• One of the biggest sources of irreproducibility
• Common practice to embed dates into binaries (e.g., __DATE__ macro in C)
• Also within archive metadata

Build paths & filesystem ordering
• The build path itself is sometimes embedded into the generated binaries
• Ordering and access may be random: linking of executables in arbitrary order

Randomness
• Builds that iterate over hash tables: elements are returned in arbitrary order
• Parallelism with arbitrary completion
• Uninitialized memory



Reproducible Builds

50

Tools – reproducible-builds.org

https://reproducible-builds.org/tools/
https://reproducible-builds.org/tools/
https://reproducible-builds.org/tools/


Case study: in-toto framework

51

in-toto framework
• Cryptographic approach
• Grants the end user the ability to verify the software supply chain
• From the inception (software components / artifacts) to the final product

https://in-toto.io/
https://in-toto.io/
https://in-toto.io/


Case study: in-toto framework

52

Security Goals of in-toto

• Supply Chain Layout integrity
• All steps defined in a supply chain are performed in the specified order

• Artifact flow integrity
• All artifacts created or transformed by a step must not be altered in-between

• Step authentication
• Steps can only be performed by intended parties
• No party can perform a step unless it is given explicit permission to do so

• Implementation transparency
• Existing supply chains should not be required to change their practices to 

implement in-toto



Case study: in-toto framework

53

Step 1: Constructing a Layout

Specifies all the valid steps, actors, and other conditions for the build:
• “Steps”
• A readme to provide helpful description
• Public keys of all of the expected actors along the supply chain
• Inputs and outputs of each “step”
• A list of inspections aka verification steps after product delivery
• Layout descriptive language
• Signed by the Project Owner



Case study: in-toto framework

54

Step 1: Constructing a Layout -- Example

Example from in-toto paper

https://www.usenix.org/system/files/sec19-torres-arias.pdf
https://www.usenix.org/system/files/sec19-torres-arias.pdf
https://www.usenix.org/system/files/sec19-torres-arias.pdf


Case study: in-toto framework

55

What is a “step” in in-toto?

Describes the actions that should be taken by a particular actor (and other 
metadata):
• Name → unique identified that describes the step
• Expected materials → expected input artifacts
• Expected products → expected output artifacts
• Expected command → the expected command to execute (and flags)
• Threshold → minimum pieces of signed link metadata that must be 

provided for verification
• A list of public key ids → IDs of the keys that can be used to sign the link 

metadata for this step



Case study: in-toto framework

56

What is a “step” in in-toto?

Examples from in-toto paper

https://www.usenix.org/system/files/sec19-torres-arias.pdf
https://www.usenix.org/system/files/sec19-torres-arias.pdf
https://www.usenix.org/system/files/sec19-torres-arias.pdf


Case study: in-toto framework

57

Step 2: Produce updated Link metadata files

• Serves as a record that the steps in the layout took place
• Includes measurements & metadata of the steps
• Name → used to identify the corresponding step
• Materials → input files & their cryptographic hashes 
• Command → the command run along with its arguments
• Products → outputs produced and their cryptographic hashes
• Byproducts → reported information about the steps (error buffers, stdout)
• Signature → a cryptographic signature over the Link



Case study: in-toto framework

58

What is a “step” in in-toto?

Examples from in-toto paper

https://www.usenix.org/system/files/sec19-torres-arias.pdf
https://www.usenix.org/system/files/sec19-torres-arias.pdf
https://www.usenix.org/system/files/sec19-torres-arias.pdf


Case study: in-toto framework

59

Step 3: Verification

• The end user obtains
• The result of the supply chain sequence (e.g., resulting artifacts)
• The initial layout file (containing all the public keys)
• The sequence of signed Link metadata files describing the steps

• Verify the sequence to determine if
• All steps were performed by valid actors
• If they produced the expected outputs at each step



in-toto visualized

Case study: in-toto framework

60

Artifacts

Links

Signature

build 1 build 2 package End user

Alice Bob Clara Dave

Create
layout

Project Owner



in-toto visualized

Case study: in-toto framework

61

Artifacts

Links

Signature

build 1 build 2 package

Alice Bob Clara

Create
layout

Layout

Project Owner

End user

Dave



in-toto visualized

Case study: in-toto framework

62

Artifacts

Links

Signature

build 1 build 2 package

Alice Bob Clara

Create
layout

Layout

Project Owner

I1

O1

L1

S1

End user

Dave



in-toto visualized

Case study: in-toto framework

63

Artifacts

Links

Signature

build 1 build 2 package

Alice Bob Clara

Create
layout

Layout

Project Owner

I1

O1

L1

S1

O1

L1

S1

O2

L2

S2

End user

Dave



in-toto visualized

Case study: in-toto framework

64

Artifacts

Links

Signature

build 1 build 2 package

Alice Bob Clara

Create
layout

Layout

Project Owner

I1

O1

L1

S1

O1

L1

S1

O2

L2

S2

O1

L1

S1

O2

L2

S2

O3

L3

S3

End user

Dave



in-toto visualized

Case study: in-toto framework

65

Artifacts

Links

Signature

build 1 build 2 package

Alice Bob Clara

Create
layout

Layout

Project Owner

I1

O1

L1

S1

O1

L1

S1

O2

L2

S2

O1

L1

S1

O2

L2

S2 O1

L1

S1

O2

L2

S2

O3

L3

S3

O3

L3

S3

End user

Dave



in-toto visualized

Case study: in-toto framework

66

build 1 build 2 package

Alice Bob Clara

Project Owner

Create
layout

Layout

Artifacts

Links

O1

L1

Signature

S1

I1

O1

L1

S1

O2

L2

S2

O1

L1

S1

O2

L2

S2

O3

L3

S3
O1

L1

S1

O2

L2

S2

O3

L3

S3

Verify

End user

Dave



Case study: in-toto framework
Concluding questions and thoughts…

Is in-toto a form of authentication or attestation?

Security of in-toto depends on some key assumptions from the paper:
• When an attacker is able to compromise infrastructure or 

communication channels but not keys, in-toto’s security properties 
ensure integrity is upheld

• It is important to underline that this threat model requires that the 
host system is not compromised

How can we obtain these guarantees? → coming up… 67



That’s all for today!
Resources from today….
• Supply chain security: definitions, theory, models

• ”On Systematics of the Information Security of Software Supply Chains”
• “Supply Chain Attacks and Resiliency Mitigations”
• “Research Directions in Software Supply Chain Security”
• “SoK: Taxonomy of Attacks on Open-Source Software Supply Chains”
• “Backstabber’s Knife Collection: A Review of Open Source Software Supply Chain Attacks”
• “Security Threats, Countermeasures, and Challenges of Digital Supply Chains”
• “Software Supply Chain Attacks An Illustrated Typological Review”

• Reproducible builds
• Paper
• Tools

• in-toto framework
• USENIX Security Paper
• Video presentation
• Website + GitHub with demo

68

https://link.springer.com/chapter/10.1007/978-3-030-63322-6_9
https://link.springer.com/chapter/10.1007/978-3-030-63322-6_9
https://apps.dtic.mil/sti/trecms/pdf/AD1108057.pdf
https://apps.dtic.mil/sti/trecms/pdf/AD1108057.pdf
https://dl.acm.org/doi/pdf/10.1145/3714464?casa_token=ORA7e3DNTx0AAAAA:qIlL4YFw6s5B8cwidgA1Mu4LVFnVQazRU9Ww5g3ePSqOj5M9sAFDy1ZYFmXQExhDQtCqDcqz3bmoync
https://dl.acm.org/doi/pdf/10.1145/3714464?casa_token=ORA7e3DNTx0AAAAA:qIlL4YFw6s5B8cwidgA1Mu4LVFnVQazRU9Ww5g3ePSqOj5M9sAFDy1ZYFmXQExhDQtCqDcqz3bmoync
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10179304&casa_token=7YWfFtWlXgMAAAAA:LKNEkVwDkYsu6st9KVubja0_nFuBSanPIwwLhwHhhdlulxsya_SfaqNr4kHhbzNlKabADInBqSs
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10179304&casa_token=7YWfFtWlXgMAAAAA:LKNEkVwDkYsu6st9KVubja0_nFuBSanPIwwLhwHhhdlulxsya_SfaqNr4kHhbzNlKabADInBqSs
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10179304&casa_token=7YWfFtWlXgMAAAAA:LKNEkVwDkYsu6st9KVubja0_nFuBSanPIwwLhwHhhdlulxsya_SfaqNr4kHhbzNlKabADInBqSs
https://arxiv.org/abs/2005.09535
https://arxiv.org/abs/2005.09535
https://dl.acm.org/doi/pdf/10.1145/3588999?casa_token=xvq6Svfu-UAAAAAA:Fe_8OkVqARRoYAA65u-JYhttV6a9PGcmVnh-Lo-oTROmsg7THRZ1LulVj1CaWeJmIzM-zRLoDQuvM4M
https://dl.acm.org/doi/pdf/10.1145/3588999?casa_token=xvq6Svfu-UAAAAAA:Fe_8OkVqARRoYAA65u-JYhttV6a9PGcmVnh-Lo-oTROmsg7THRZ1LulVj1CaWeJmIzM-zRLoDQuvM4M
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/584947/Cyber-Reports-2023-01-Software-Supply-Chain-Attacks.pdf?sequence=2
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/584947/Cyber-Reports-2023-01-Software-Supply-Chain-Attacks.pdf?sequence=2
https://hal.science/hal-03196519/
https://hal.science/hal-03196519/
https://reproducible-builds.org/tools/
https://reproducible-builds.org/tools/
https://www.usenix.org/system/files/sec19-torres-arias.pdf
https://www.usenix.org/system/files/sec19-torres-arias.pdf
https://www.usenix.org/conference/usenixsecurity19/presentation/torres-arias
https://www.usenix.org/conference/usenixsecurity19/presentation/torres-arias
https://in-toto.io/
https://in-toto.io/
https://github.com/in-toto/demo


That’s all for today!
Coming up….
• What can be used to obtain roots of trust (RoT) at run-time?

• Secure boot?
• Something else? (… here comes Hardware & Mobile Security …)

Reminders:
• A3 is due on July 11
• Research project proposals

69

https://watssec.github.io/cs453-s25/assignments/a3/
https://watssec.github.io/cs453-s25/assignments/a3/


70


	Default Section
	Slide 1: Module: Usable Security
	Slide 2: Reminders & Recap
	Slide 3: Today
	Slide 4: Software Supply Chain Security
	Slide 5: Software Supply Chain Security
	Slide 6: Software Supply Chain Security
	Slide 7: Software Supply Chain Models
	Slide 8: Software Supply Chain Models
	Slide 9: Software Supply Chain Models
	Slide 10: Software Supply Chain Models
	Slide 11: Software Supply Chain Models
	Slide 12: Software Supply Chain Models
	Slide 13: Software Supply Chain Models
	Slide 14: Software Supply Chain Models
	Slide 15: Software Supply Chain Models
	Slide 16: Software Supply Chain Models
	Slide 17: Software Supply Chain Models
	Slide 18: Software Supply Chain Models
	Slide 19: Software Supply Chain Models
	Slide 20: Software Supply Chain Models
	Slide 21: Software Supply Chain Models
	Slide 22: Software Supply Chain Models
	Slide 23: Software Supply Chain Models
	Slide 24: Software Supply Chain Models
	Slide 25: Software Supply Chain Models
	Slide 26: Software Supply Chain Models
	Slide 27: Software Supply Chain Models
	Slide 28: Software Supply Chain Models
	Slide 29: Software Supply Chain Models
	Slide 30: Software Supply Chain Models
	Slide 31: Software Supply Chain Models
	Slide 32: Software Supply Chain Models
	Slide 33: Software Supply Chain Attacks
	Slide 34: Software Supply Chain Attacks
	Slide 35: Software Supply Chain Attacks
	Slide 36: Software Supply Chain Attacks
	Slide 37: Software Supply Chain Attacks
	Slide 38: Software Supply Chain Attacks
	Slide 39: Software Supply Chain Attacks
	Slide 40: Software Supply Chain Attacks
	Slide 41: Software Supply Chain Attacks
	Slide 42: Software Supply Chain Defenses
	Slide 43: Software Supply Chain Defenses
	Slide 44: Software Supply Chain Defenses
	Slide 45: Reproducible Builds
	Slide 46: Reproducible Builds
	Slide 47: Reproducible Builds
	Slide 48: Reproducible Builds
	Slide 49: Reproducible Builds
	Slide 50: Reproducible Builds
	Slide 51: Case study: in-toto framework
	Slide 52: Case study: in-toto framework
	Slide 53: Case study: in-toto framework
	Slide 54: Case study: in-toto framework
	Slide 55: Case study: in-toto framework
	Slide 56: Case study: in-toto framework
	Slide 57: Case study: in-toto framework
	Slide 58: Case study: in-toto framework
	Slide 59: Case study: in-toto framework
	Slide 60: Case study: in-toto framework
	Slide 61: Case study: in-toto framework
	Slide 62: Case study: in-toto framework
	Slide 63: Case study: in-toto framework
	Slide 64: Case study: in-toto framework
	Slide 65: Case study: in-toto framework
	Slide 66: Case study: in-toto framework
	Slide 67: Case study: in-toto framework
	Slide 68: That’s all for today!
	Slide 69: That’s all for today!
	Slide 70


